Verify: cos(x) + cos(x)·cot2(x) = cot(x)·csc(x)
= cos(x)·[ 1 + cot2(x) ] factor out the cos(x) term
= cos(x)·csc2(x) replace 1 + cot2(x) with csc2(x)
= cos(x)·[ 1 / sin2(x) ] replace csc2(x) with 1/sin2(x)
= [ cos(x) / sin(x) ]·[ 1 / sin(x) ] divide sin2(x) into its two factors
= cot(x)·csc(x) replace ...