Processing math: 100%
 
+0  
 
+1
728
3
avatar

Evaluate the sum 6321+6521+6721+6921+

 Mar 5, 2019
 #1
avatar
+1

sumfor(n, 1, infinity, 6/((2*n + 1)^2 - 1)) = 3 / 2

 Mar 5, 2019
 #2
avatar+26396 
+2

help

6321+6521+6721+6921+

 

6321+6521+6721+6921+=6(31)(3+1)+6(51)(5+1)+6(71)(7+1)+6(91)(9+1)+=624+646+668+6810+=6(124+146+168+1810+)=6k=112k(2k+2)=6k=114k(k+1)=64k=11k(k+1)=32k=11k(k+1)|1k(k+1)=1k1k+1=32k=1(1k1k+1)=32[k=1(1k)k=1(1k+1)]=32[1+k=2(1k)k=1(1k+1)]=32[1+k=2(1k)k=2(1k)]=32(1+0)=32

 

laugh

 Mar 5, 2019
 #3
avatar+130475 
+1

Note that

3^2 - 1 =  8 = 2*4

5^2 - 1 = 24 = 4*6

7^2 - 1 = 48 =  6*8

 

So  we have  for n = 1 to infinity

 

6 *    1 / [ 2n * (2n + 2) ]  =  6 *   1 / [ 4 (n)(n+ 1) ]   =  (3/2) * 1/ [ n * (n + 1) ]

 

Note that     1  / [ n * (n + 1) ]   can be written as    1 /  n - 1/{n + 1]

 

So we have

 

(3/2)  [ ( 1 - 1/2 ) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ...... ]    

 

All the terms cancel  except  for the first term , 1,   and the last term , -1/(n + 1)

 

And when n is large  - 1 (n + 1) → 0

 

So....the sum is

 

(3/2) (1)  =

 

3/2

 

 

cool cool cool

 Mar 5, 2019

1 Online Users