help
632−1+652−1+672−1+692−1+⋯
632−1+652−1+672−1+692−1+⋯=6(3−1)(3+1)+6(5−1)(5+1)+6(7−1)(7+1)+6(9−1)(9+1)+⋯=62⋅4+64⋅6+66⋅8+68⋅10+⋯=6(12⋅4+14⋅6+16⋅8+18⋅10+⋯)=6⋅∞∑k=112k(2k+2)=6⋅∞∑k=114k(k+1)=64⋅∞∑k=11k(k+1)=32⋅∞∑k=11k(k+1)|1k(k+1)=1k−1k+1=32⋅∞∑k=1(1k−1k+1)=32⋅[∞∑k=1(1k)−∞∑k=1(1k+1)]=32⋅[1+∞∑k=2(1k)−∞∑k=1(1k+1)]=32⋅[1+∞∑k=2(1k)−∞∑k=2(1k)]=32⋅(1+0)=32
Note that
3^2 - 1 = 8 = 2*4
5^2 - 1 = 24 = 4*6
7^2 - 1 = 48 = 6*8
So we have for n = 1 to infinity
6 * 1 / [ 2n * (2n + 2) ] = 6 * 1 / [ 4 (n)(n+ 1) ] = (3/2) * 1/ [ n * (n + 1) ]
Note that 1 / [ n * (n + 1) ] can be written as 1 / n - 1/{n + 1]
So we have
(3/2) [ ( 1 - 1/2 ) + (1/2 - 1/3) + (1/3 - 1/4) + (1/4 - 1/5) + ...... ]
All the terms cancel except for the first term , 1, and the last term , -1/(n + 1)
And when n is large - 1 (n + 1) → 0
So....the sum is
(3/2) (1) =
3/2