We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
35
1
avatar

Find the ordered pair \((a,b)\) of real numbers for which \((ax + b)(x^5 + 1) - (5x + 1)\) is divisible by \(x^2 + 1.\)

 May 15, 2019
 #1
avatar+22180 
+2

Find the ordered pair \((a,b)\) of real numbers for which \((ax + b)(x^5 + 1) - (5x + 1)\) is divisible by \(x^2 + 1\).

 

\(\begin{array}{|rcll|} \hline && \mathbf{(ax + b)(x^5 + 1) - (5x + 1)} \\ &=& ax^6+bx^5+ax+b-5x-1 \\ &=&\mathbf{ ax^6+bx^5+(a-5)x +(b-1) } \\\\ &=& (rx^4+sx^3+tx^2+ux+v)(x^2+1) \\ &=& rx^6+sx^5+tx^4+ux^3+vx^2+rx^4+sx^3+tx^2+ux+v \\ &=&\mathbf{ \underbrace{r}_{=a}x^6+\underbrace{s}_{=b}x^5+ \underbrace{(t+r)}_{=0}x^4+\underbrace{(u+s)}_{=0}x^3+\underbrace{(v+t)}_{=0}x^2 + \underbrace{u }_{=a-5}x+\underbrace{v}_{=b-1} } \\ \hline v &=& b-1 \\ u &=& a-5 \\ r &=& a \\ s &=& b \\\\ t+r&=& 0 \quad | \quad r = a \\ t+a &=& 0 \\ \mathbf{t} &=& \mathbf{-a} \\\\ u +s &=& 0 \quad | \quad u=a-5,\ s = b \\ a-5+b &=& 0 \\ \mathbf{a +b} &=& \mathbf{5} \qquad ( 1) \\\\ v+t &=& 0 \quad | \quad v=b-1,\ t = -a \\ b-1-a &=& 0 \\ \mathbf{b-a} &=& \mathbf{1} \qquad ( 2) \\ \hline \end{array} \)


\(\mathbf{a=\ ?} \\ \mathbf{b=\ ?}\)

\(\begin{array}{|lrcll|} \hline (1)+(2): &a +b + b-a &=& 5+1 \\ & 2b &=& 6 \\ & \mathbf{b } &=& \mathbf{3} \\ \hline (1)-(2): &a +b + -(b-a) &=& 5-1 \\ & 2a &=& 4\\ & \mathbf{a } &=& \mathbf{2} \\ \hline \end{array}\)

 

\((a,b) =(2,3)\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{(ax + b)(x^5 + 1) - (5x + 1)} \\ &=& (2x + 3)(x^5 + 1) - (5x + 1) \\ &=& \mathbf{2x^6+3x^5-3x+2} \\ \hline \end{array}\)

 

Check:

 

laugh

 
 May 16, 2019

8 Online Users

avatar