+0  
 
0
54
1
avatar

For a real number x, find the minimum value of (x + 4)(x + 1)(x - 1)(x - 4).

 Dec 14, 2019

Best Answer 

 #1
avatar+19789 
0

(x^2-16)(x^2-1)

x^4 -16x^2 - x^2 + 16

x^4 -17x^2+16     take derivative and set = 0

4x^3-34x = 0

2x(2x^2-17)

x = 0       2x^2 = 17     x^2 = 8.5   x = +-sqrt8.5    

 

SUb these values in to the original equation to see which produces the smalles result  

    you will find at x = sqrt 8.5    or   sqrt -8.5    the result will be the minimum (-56.25) 

       at x = 0 the function = 16

 

Here is a graph:

https://www.desmos.com/calculator/l4gbkfzoa7

 Dec 14, 2019
edited by ElectricPavlov  Dec 14, 2019
 #1
avatar+19789 
0
Best Answer

(x^2-16)(x^2-1)

x^4 -16x^2 - x^2 + 16

x^4 -17x^2+16     take derivative and set = 0

4x^3-34x = 0

2x(2x^2-17)

x = 0       2x^2 = 17     x^2 = 8.5   x = +-sqrt8.5    

 

SUb these values in to the original equation to see which produces the smalles result  

    you will find at x = sqrt 8.5    or   sqrt -8.5    the result will be the minimum (-56.25) 

       at x = 0 the function = 16

 

Here is a graph:

https://www.desmos.com/calculator/l4gbkfzoa7

ElectricPavlov Dec 14, 2019
edited by ElectricPavlov  Dec 14, 2019

6 Online Users

avatar