We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
404
1
avatar

In right triangle $ABC$, we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$. If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$, then what is $\cos \angle ABM$?

 Jun 28, 2018

Best Answer 

 #1
avatar+22198 
+2

In right triangle $ABC$,
we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$.
If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$,
then what is $\cos \angle ABM$?

 

 

\(\begin{array}{|rcll|} \hline \angle \text{ABM} &=& 90^{\circ}-\angle \text{CAB} \\ \cos(\angle\text{ABM}) &=& \cos(90^{\circ}-\angle \text{CAB}) \\ \cos(\angle \text{ABM}) &=& \sin(\angle \text{CAB}) \quad & | \quad \sin(\angle \text{CAB}) = \dfrac{BC}{\sqrt{AB^2+BC^2} } \\ \cos(\angle \text{ABM}) &=& \dfrac{BC}{\sqrt{AB^2+BC^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{10^2+24^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{676} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{ 26 } \\\\ \mathbf{ \cos(\angle \text{ABM}) } & \mathbf{=} & \mathbf{ \dfrac{12}{ 13 } } \\ \hline \end{array} \)

 

laugh

 Jun 28, 2018
 #1
avatar+22198 
+2
Best Answer

In right triangle $ABC$,
we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$.
If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$,
then what is $\cos \angle ABM$?

 

 

\(\begin{array}{|rcll|} \hline \angle \text{ABM} &=& 90^{\circ}-\angle \text{CAB} \\ \cos(\angle\text{ABM}) &=& \cos(90^{\circ}-\angle \text{CAB}) \\ \cos(\angle \text{ABM}) &=& \sin(\angle \text{CAB}) \quad & | \quad \sin(\angle \text{CAB}) = \dfrac{BC}{\sqrt{AB^2+BC^2} } \\ \cos(\angle \text{ABM}) &=& \dfrac{BC}{\sqrt{AB^2+BC^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{10^2+24^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{676} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{ 26 } \\\\ \mathbf{ \cos(\angle \text{ABM}) } & \mathbf{=} & \mathbf{ \dfrac{12}{ 13 } } \\ \hline \end{array} \)

 

laugh

heureka Jun 28, 2018

11 Online Users

avatar