+0  
 
0
110
1
avatar

In right triangle $ABC$, we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$. If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$, then what is $\cos \angle ABM$?

Guest Jun 28, 2018

Best Answer 

 #1
avatar+20013 
+2

In right triangle $ABC$,
we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$.
If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$,
then what is $\cos \angle ABM$?

 

 

\(\begin{array}{|rcll|} \hline \angle \text{ABM} &=& 90^{\circ}-\angle \text{CAB} \\ \cos(\angle\text{ABM}) &=& \cos(90^{\circ}-\angle \text{CAB}) \\ \cos(\angle \text{ABM}) &=& \sin(\angle \text{CAB}) \quad & | \quad \sin(\angle \text{CAB}) = \dfrac{BC}{\sqrt{AB^2+BC^2} } \\ \cos(\angle \text{ABM}) &=& \dfrac{BC}{\sqrt{AB^2+BC^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{10^2+24^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{676} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{ 26 } \\\\ \mathbf{ \cos(\angle \text{ABM}) } & \mathbf{=} & \mathbf{ \dfrac{12}{ 13 } } \\ \hline \end{array} \)

 

laugh

heureka  Jun 28, 2018
 #1
avatar+20013 
+2
Best Answer

In right triangle $ABC$,
we have $AB = 10$, $BC = 24$, and $\angle ABC = 90^\circ$.
If $M$ is on $\overline{AC}$ such that $\overline{BM}$ is an altitude of $\triangle ABC$,
then what is $\cos \angle ABM$?

 

 

\(\begin{array}{|rcll|} \hline \angle \text{ABM} &=& 90^{\circ}-\angle \text{CAB} \\ \cos(\angle\text{ABM}) &=& \cos(90^{\circ}-\angle \text{CAB}) \\ \cos(\angle \text{ABM}) &=& \sin(\angle \text{CAB}) \quad & | \quad \sin(\angle \text{CAB}) = \dfrac{BC}{\sqrt{AB^2+BC^2} } \\ \cos(\angle \text{ABM}) &=& \dfrac{BC}{\sqrt{AB^2+BC^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{10^2+24^2} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{\sqrt{676} } \\\\ \cos(\angle \text{ABM}) &=& \dfrac{24}{ 26 } \\\\ \mathbf{ \cos(\angle \text{ABM}) } & \mathbf{=} & \mathbf{ \dfrac{12}{ 13 } } \\ \hline \end{array} \)

 

laugh

heureka  Jun 28, 2018

35 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.