+0  
 
0
184
3
avatar

Suppose that $a$, $b$, and $c$ are real numbers such that $\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ and $\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$. Find $\frac{a}{c}$. Completely simplify and rationalize the denominator.

Guest Jan 13, 2018

Best Answer 

 #1
avatar+7154 
+1

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

hectictar  Jan 13, 2018
edited by hectictar  Jan 13, 2018
 #1
avatar+7154 
+1
Best Answer

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

hectictar  Jan 13, 2018
edited by hectictar  Jan 13, 2018
 #3
avatar+92768 
+1

None of this is LaTex displaying for me at all.     sad sad sad

Melody  Jan 13, 2018
 #2
avatar+87294 
+2

Find  \($\frac{a}{c}$\)

Given :  \($\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ \)         \($\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$\)

 

b  =  √(21/10) a

b =  √(135/ 8)  c

 

Which implies  that

 

√(21/10) a  =   √(135/ 8)  c      ⇒

 

a / c   =   √(135/ 8)  /   √(21/10)

 

a / c  =  √   [ ( 135 * 10)  / (21 * 8) ]  =  √ [ (45 * 5)  / (7 * 4) ]   =  15 / [ 2√7 ]  =

 

15√7 / 14 

 

 

cool cool cool

CPhill  Jan 13, 2018

10 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.