We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
524
3
avatar

Suppose that $a$, $b$, and $c$ are real numbers such that $\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ and $\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$. Find $\frac{a}{c}$. Completely simplify and rationalize the denominator.

 Jan 13, 2018

Best Answer 

 #1
avatar+8131 
+1

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

.
 Jan 13, 2018
edited by hectictar  Jan 13, 2018
 #1
avatar+8131 
+1
Best Answer

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

hectictar Jan 13, 2018
edited by hectictar  Jan 13, 2018
 #3
avatar+101761 
+1

None of this is LaTex displaying for me at all.     sad sad sad

Melody  Jan 13, 2018
 #2
avatar+101234 
+2

Find  \($\frac{a}{c}$\)

Given :  \($\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ \)         \($\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$\)

 

b  =  √(21/10) a

b =  √(135/ 8)  c

 

Which implies  that

 

√(21/10) a  =   √(135/ 8)  c      ⇒

 

a / c   =   √(135/ 8)  /   √(21/10)

 

a / c  =  √   [ ( 135 * 10)  / (21 * 8) ]  =  √ [ (45 * 5)  / (7 * 4) ]   =  15 / [ 2√7 ]  =

 

15√7 / 14 

 

 

cool cool cool

 Jan 13, 2018

12 Online Users

avatar
avatar
avatar