+0  
 
0
41
3
avatar

Suppose that $a$, $b$, and $c$ are real numbers such that $\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ and $\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$. Find $\frac{a}{c}$. Completely simplify and rationalize the denominator.

 
Guest Jan 13, 2018

Best Answer 

 #1
avatar+5924 
+1

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

 
hectictar  Jan 13, 2018
edited by hectictar  Jan 13, 2018
Sort: 

3+0 Answers

 #1
avatar+5924 
+1
Best Answer

\(\frac{a}{b}\,=\,\frac{\sqrt{10}}{\sqrt{21}} \qquad\text{so}\qquad a\,=\,\frac{b\sqrt{10}}{\sqrt{21}}\\~\\ \frac{b}{c}\,=\,\frac{\sqrt{135}}{\sqrt8}\qquad\text{so}\qquad c\,=\,\frac{b\sqrt{8}}{\sqrt{135}} \\~\\ \ \\~\\\frac{a}{c}\,=\,(\frac{b\sqrt{10}}{\sqrt{21}})\,/\,(\frac{b\sqrt{8}}{\sqrt{135}}) \,=\,(\frac{b\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{b\sqrt{8}}) \,=\,(\frac{\sqrt{10}}{\sqrt{21}})(\frac{\sqrt{135}}{\sqrt{8}}) \\~\\ \frac{a}{c}\,=\,\frac{\sqrt{10\,\cdot\,135}}{\sqrt{21\,\cdot\,8}} \,=\,\frac{\sqrt{2\cdot5\cdot5\cdot3\cdot3\cdot3}}{\sqrt{3\cdot7\cdot2\cdot2\cdot2}} \,=\,\frac{\sqrt{2}\cdot\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}\cdot\sqrt{3}}{\sqrt{3}\cdot\sqrt{7}\cdot\sqrt{2\cdot2}\cdot\sqrt{2}} \,=\,\frac{\sqrt{5\cdot5}\cdot\sqrt{3\cdot3}}{\sqrt{7}\cdot\sqrt{2\cdot2}} \\~\\ \frac{a}{c}\,=\,\frac{5\,\cdot\,3}{2\sqrt{7}} \,=\,\frac{15\sqrt7}{14} \)

 
hectictar  Jan 13, 2018
edited by hectictar  Jan 13, 2018
 #3
avatar+91445 
+1

None of this is LaTex displaying for me at all.     sad sad sad

 
Melody  Jan 13, 2018
 #2
avatar+80978 
+2

Find  \($\frac{a}{c}$\)

Given :  \($\frac{a}{b} = \frac{\sqrt{10}}{\sqrt{21}}$ \)         \($\frac{b}{c} = \frac{\sqrt{135}}{\sqrt{8}}$\)

 

b  =  √(21/10) a

b =  √(135/ 8)  c

 

Which implies  that

 

√(21/10) a  =   √(135/ 8)  c      ⇒

 

a / c   =   √(135/ 8)  /   √(21/10)

 

a / c  =  √   [ ( 135 * 10)  / (21 * 8) ]  =  √ [ (45 * 5)  / (7 * 4) ]   =  15 / [ 2√7 ]  =

 

15√7 / 14 

 

 

cool cool cool

 
CPhill  Jan 13, 2018

21 Online Users

avatar
avatar
avatar
avatar
avatar
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details