Processing math: 100%
 
+0  
 
0
651
1
avatar

If A and B are numbers such that the polynomial x2017+Ax+B is divisible by (x+1)2, what is the value of B?

 Mar 22, 2019
 #1
avatar+6252 
+1

This probably isn't how this problem is intended to be done but it's all I can come up with.

 

Let p(x)=x2017+Ax+BWe'll expand p(x) as a Taylor series about (x+1)p(x)=k=0 p(k)(1)(x+1)kk!p(x) being divisible by (x+1)2 means that the first two terms must be 0p(0)(1)=p(1)=1A+B=0p(1)(1)=2017(1)2016+A=2017+A=0A=2017B=2016

 

Note: p(k)(x)=dkpdxk(x)

 Mar 23, 2019

0 Online Users