+0  
 
0
19
2
avatar

A point (x,y) is a distance of 6 units from the x-axis. It is a distance of 5 units from the point (8,3). It is a distance \(\sqrt{n}\) from the origin. Given that x<8, what is n?

 
 Jan 11, 2019

Best Answer 

 #1
avatar+15327 
+2

If the distance to the x axis is 6, then y = 6  or  -6

 

so the point becomes   x , 6     or   x , -6

 

It is 5 units to 8,3   (this rules out  y = -6) so we are working with  x,6

distance formula:

5= sqrt[ ( x-8)^2 + (6-3)^2 ]

5 = sqrt [(x-8)^2 +9 ]                        square both sides

25 = (x-8)^2 + 9

16 = (x-8)^2            which shows that   x-8 = 4 or -4     so x = 12 or 4   

 

Question states x<8   so that rules out x= 12    and we are left with  x = 4 

So the point becomes  x = 4 y = 6          (4,6 )

 

Distance formula from the origin (0,0)  =    d = sqrt [ (4-0)^2 +(6-0)^2] =  sqrt (52)       so   n = 52

 
 Jan 11, 2019
 #1
avatar+15327 
+2
Best Answer

If the distance to the x axis is 6, then y = 6  or  -6

 

so the point becomes   x , 6     or   x , -6

 

It is 5 units to 8,3   (this rules out  y = -6) so we are working with  x,6

distance formula:

5= sqrt[ ( x-8)^2 + (6-3)^2 ]

5 = sqrt [(x-8)^2 +9 ]                        square both sides

25 = (x-8)^2 + 9

16 = (x-8)^2            which shows that   x-8 = 4 or -4     so x = 12 or 4   

 

Question states x<8   so that rules out x= 12    and we are left with  x = 4 

So the point becomes  x = 4 y = 6          (4,6 )

 

Distance formula from the origin (0,0)  =    d = sqrt [ (4-0)^2 +(6-0)^2] =  sqrt (52)       so   n = 52

 
ElectricPavlov Jan 11, 2019
 #2
avatar+94296 
0

Very nice, EP......!!!!

 

 

cool cool cool

 
CPhill  Jan 11, 2019

40 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.