+0  
 
+1
53
1
avatar

Suppose that \(ABC_4+200_{10}=ABC_9\), where A, B, and C are valid digits in base 4 and 9. What is the sum when you add all possible values of A, all possible values of B, and all possible values of C?

 Jan 21, 2019
 #1
avatar+21338 
+7

Suppose that

\(ABC_4+200_{10}=ABC_9\)
ABC_4+200_{10}=ABC_9,
where A, B, and C are valid digits in base 4 and 9.
What is the sum when you add all possible values of A, all possible values of B, and all possible values of C?

 

1.

A, B, and C are valid digits in base 4 and 9

\(A = \{ 0,1,2,3 \} \\ B = \{ 0,1,2,3 \} \\ C = \{ 0,1,2,3 \} \)

 

2.

\(\begin{array}{|rcll|} \hline ABC_4+200_{10} &=& ABC_9 \\ \overbrace{A\cdot 4^2 + B\cdot 4 + C}^{ABC_4=} + 200 &=& \overbrace{ A\cdot 9^2 + B\cdot 9 + C}^{ABC_9=} \\ 16A+4B+200 &=& 81A+9B \\ 65A+5B &=& 200 \quad & | \quad :5\\ \mathbf{13A+B} &\mathbf{=}&\mathbf{40} \\ \hline \end{array}\)

 

3.

Possible values of A and B

\(\begin{array}{|c|c|r|r|} \hline A & B & 13A+B & =40\ ? \\ \hline 0 & 0 & 0 \\ & 1 & 1 \\ & 2 & 2 \\ & 3 & 3 \\ \hline 1 & 0 & 13 \\ & 1 & 14 \\ & 2 & 15 \\ & 3 & 16 \\ \hline 2 & 0 & 26 \\ & 1 & 27 \\ & 2 & 28 \\ & 3 & 29 \\ \hline 3 & 0 & 39 \\ & 1 & 40 & \checkmark \\ & 2 & 41 \\ & 3 & 42 \\ \hline \end{array}\\ A=3,\ B=1,\ C=0,1,2,3 \)

 

\(\text{sum} = 3+1+0+1+2+3 = \mathbf{10}\)

 

The sum when you add all possible values of A, all possible values of B, and all possible values of C is 10

 

check:

\(310_4+200_{10} = 310_9 =252_{10} \\ 311_4+200_{10} = 311_9 =253_{10} \\ 312_4+200_{10} = 312_9 =254_{10} \\ 313_4+200_{10} = 313_9 =255_{10} \)

 

laugh

 Jan 22, 2019
edited by heureka  Jan 22, 2019

19 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.