+0  
 
0
757
3
avatar

cos2theta = -4/5 and 90* < theta < 135*, what is the value of costheta

 Apr 28, 2016

Best Answer 

 #1
avatar+118723 
+5

cos2theta = -4/5 and 90* < theta < 135*, what is the value of costheta

 

 \(cos2\theta = \frac{-4}{5}\\ cos^2\theta - sin^2\theta = \frac{-4}{5}\\ 1-sin^2\theta - sin^2\theta = \frac{-4}{5}\\ 1-2sin^2\theta = \frac{-4}{5}\\ 1+\frac{4}{5} = 2sin^2\theta\\ \frac{9}{5} = 2sin^2\theta\\ \frac{9}{10} = sin^2\theta\\ sin\theta=\pm\frac{3}{\sqrt{10}} \\ \mbox{But theta is in the second quadrant}\\ sin\theta=\frac{3}{\sqrt{10}} \\ \theta = 180-sin^{-1}\frac{3}{\sqrt{10}} \\ \theta \approx 108^026'58" \)

 Apr 28, 2016
 #1
avatar+118723 
+5
Best Answer

cos2theta = -4/5 and 90* < theta < 135*, what is the value of costheta

 

 \(cos2\theta = \frac{-4}{5}\\ cos^2\theta - sin^2\theta = \frac{-4}{5}\\ 1-sin^2\theta - sin^2\theta = \frac{-4}{5}\\ 1-2sin^2\theta = \frac{-4}{5}\\ 1+\frac{4}{5} = 2sin^2\theta\\ \frac{9}{5} = 2sin^2\theta\\ \frac{9}{10} = sin^2\theta\\ sin\theta=\pm\frac{3}{\sqrt{10}} \\ \mbox{But theta is in the second quadrant}\\ sin\theta=\frac{3}{\sqrt{10}} \\ \theta = 180-sin^{-1}\frac{3}{\sqrt{10}} \\ \theta \approx 108^026'58" \)

Melody Apr 28, 2016
 #2
avatar
0

What does it takento become a site admin

 Apr 28, 2016
 #3
avatar+37170 
+5

Cos 2theta = -4/5

ARCcos2 theta = arcos (-4/5)

2theta = 143.13 degrees

theta = 71.565 degrees      BUT this is in the WRONG range of  90 - 135     SO we need to find the value in the second quandrant which corresponds to 71.565

180 - 71.565 = 108.435 degrees

 Apr 28, 2016

1 Online Users