+0  
 
0
811
3
avatar+1207 

Suppose j and k are inversely proportional. If j = 16 when k = 21, find the value of j  when k = 14 .

 Aug 22, 2018
 #1
avatar+399 
+2

Inversely proportional means basically that the product of the numerator and denominator will always be the same. So if the fraction is \(\frac{16}{21} = \frac{j}{k}\), the product of \(16\times21 = 336\). We are trying to find \(j\) if \(k = 14\). We have \(\frac{16}{21} = \frac{j}{14}\). You can solve this by doing \(336\) divided by \(14\), which gives you \(24\)\(j = 24\).

 

- Daisy

 Aug 22, 2018
 #2
avatar+129907 
+2

Thanks Daisy!!!!....here's another way

 

j  = C / k      where C is the proportionality constant

 

And we know that

 

16 = C / 21      multiply both sides by 21

 

336  = C

 

So  when  k = 14  we have that

 

j = 336 / 14  =   24

 

 

 

cool cool cool

 Aug 22, 2018
 #3
avatar+399 
+2

That makes sense, too! Thanks Chris!

 

- Daisy

dierdurst  Aug 22, 2018

0 Online Users