Processing math: 100%
 
+0  
 
0
901
3
avatar

The equation y = -16t^2 - 60t + 54$ describes the height (in feet) of a ball thrown downward at 60 feet per second from a height of 54 feet from the ground. In how many seconds will the ball hit the ground? Express your answer as a decimal rounded to the nearest hundredth.

 May 16, 2019
 #1
avatar+9488 
+4

height  =  -16t2  - 60t + 54     , where  t  is the number of seconds after the ball is released

 

In how many seconds will the ball hit the ground?

In other words, what is  t  when the height is zero?

 

Plug in  0  for the height and solve for  t .

 

0  =  -16t2  - 60t + 54

                                             We can divide both sides of the equation by  -2

0  =  8t2 + 30t - 27

                                             Let's split  30t  into two terms such that their coefficients multiply to  -216

0  =  8t2 - 6t + 36t - 27

                                             Factor  2t  out of the first two terms and factor  9  out of the last two terms

0  =  2t(4t - 3) + 9(4t - 3)

                                             Factor  (4t - 3)  out of both remaining terms

0  =  (4t - 3)(2t + 9)

                                             Set each factor equal to  0  and solve for  t

4t - 3  =  0

_______or_______

2t + 9  =  0

 

 

4t  =  3

 

2t  =  -9  
t  =  3/4   t  =  -9/2

 

 

t  =  0.75   t  =  -4.5  

 

We want the number of seconds after the ball is released, so we only want the positive solution.

 

The ball will hit the ground  0.75  seconds.

 

Here's a graph: https://www.desmos.com/calculator/kznk4jayc4

 May 16, 2019
 #2
avatar+24 
-5

Can you use the quadratic formula to solve this?

ProffesorNobody  May 16, 2019
 #3
avatar+9488 
+3

Yep! You can use the quadratic formula to solve   -16t2  - 60t + 54  =  0   for  t , like this:

 

t=(60)±(60)24(16)(54)2(16)=60±705632=60±8432  t=60+8432ort=608432 t=14432ort=2432 t=4.5ort=0.75

 

smiley

hectictar  May 16, 2019
edited by hectictar  May 16, 2019

1 Online Users

avatar