We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
197
2
avatar+165 

Given positive integers x and y such that x doesn't equal y and 1/x+1/y=1/12, what is the smallest possible value for x+y?

 Dec 23, 2018
 #1
avatar+4322 
+2

We have \(\frac{x+y}{xy}=\frac{1}{12}, 12(x+y)=xy\)\(12x+12y=xy\) . Try to plug in numbers!

 Dec 23, 2018
 #2
avatar+103138 
+2

1/x + 1/y  =  1/12

x + y = xy/12

12(x + y) = xy

12x  - xy   =  -12y

x (12 - y)  = -12y

x ( y - 12)  = 12y

 

x =  12y / ( y - 12)

 

The smallest that y can be and still have x positive is when y = 13

 

(1) If y = 13  x = 156

(2) If y =14  x  = 84

3) If y = 15  x = 60

(4) If y = 16 x = 48

(5) If y = 18 x = 36

(6) If y = 20  x = 30

(7) If y = 24 x = 24      but x and y cannot be the same

(8) If x = 30  y = 20

 

And every other combo will be a repeat  of the sum of x and y for  (1) - (6)

 

So.....the smallest value of x  + y  =   50

 

 

cool cool cool 

 Dec 23, 2018
edited by CPhill  Dec 23, 2018

11 Online Users