We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
102
4
avatar

Determine the value of \(\frac{\frac{2016}{1} + \frac{2015}{2} + \frac{2014}{3} + \dots + \frac{1}{2016}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots + \frac{1}{2017}}.\)

 May 2, 2019
 #1
avatar
+1

Sum up the top and bottom separately and divide:
T = sumfor(n, 1, 2017,(2017 - n) / n) = 14495.83626
B = sumfor(n, 2, 2017,(1 / n) = 7.186830075
T / B = 14495.83626 / 7.186830075 =2017

 May 2, 2019
 #2
avatar+23041 
+6

Determine the value of

\(\large \dfrac{\dfrac{2016}{1} + \dfrac{2015}{2} + \dfrac{2014}{3} + \dots + \dfrac{1}{2016}}{\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2017}}.\)

 

\(\begin{array}{|rcll|} \hline && \mathbf{\dfrac{\dfrac{2016}{1} + \dfrac{2015}{2} + \dfrac{2014}{3} + \dots + \dfrac{1}{2016}}{\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2017}} } \\\\ &=& \dfrac{\dfrac{2017-1}{1} + \dfrac{2017-2}{2} + \dfrac{2017-3}{3} + \dots + \dfrac{2017-2016}{2016}} {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{1} + \dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}-2016\cdot 1} {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}+2017-2016 } {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016}+1 } {\dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+ \dfrac{1}{2017}} \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{1}{2} + \dfrac{1}{3} + \dfrac{1}{4} + \dots + \dfrac{1}{2016}+\dfrac{1}{2017} \right)\times \dfrac{2017}{2017} } \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+\dfrac{2017}{2017} \right)\times \dfrac{1}{2017} } \\\\ &=& \dfrac{\dfrac{2017}{2} + \dfrac{2017}{3} + \dots + \dfrac{2017}{2016} +1 } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+1 \right)\times \dfrac{1}{2017} } \\\\ &=& \dfrac{\left(\dfrac{2017}{2} + \dfrac{2017}{3}+ \dfrac{2017}{4} + \dots + \dfrac{2017}{2016} +1\right) } {\left( \dfrac{2017}{2} + \dfrac{2017}{3} + \dfrac{2017}{4} + \dots + \dfrac{2017}{2016}+1 \right) } \times 2017 \\\\ &=& \mathbf{2017} \\ \hline \end{array}\)

 

laugh

 May 3, 2019
 #3
avatar+102948 
+2

Nice, heureka   !!!!

 

 

 

cool cool cool

CPhill  May 3, 2019
 #4
avatar+23041 
+2

Thank you, CPhill !

 

laugh

heureka  May 6, 2019

7 Online Users

avatar