+0  
 
0
48
1
avatar

If the parabola $y_1 = x^2 + 2x + 7$ and the line $y_2 = 6x + b$ intersect at only one point, what is the value of $b$?

Guest Jan 23, 2018
Sort: 

1+0 Answers

 #1
avatar+82489 
+1

y =   x^2 + 2x  + 7

y  =  6x  + b

 

Set these equal

 

x^2 + 2x  + 7   =  6x + b      rearrange as

 

x^2 -  4x  +  (7 - b)  = 0

 

If this only has one solution point....it must be that

 

(-4)^2  - 4(7 - b)   =  0

 

16  - 28  +  4b  = 0

 

-12   +  4b  =  0

 

-12   =  -4b       divide both sides by  -4

 

3  = b

 

This graph shows the intersection point of  (2, 15)

 

https://www.desmos.com/calculator/mlvins5guo

 

 

 

cool cool cool

CPhill  Jan 23, 2018

9 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details