We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
478
1
avatar

If the parabola $y_1 = x^2 + 2x + 7$ and the line $y_2 = 6x + b$ intersect at only one point, what is the value of $b$?

 Jan 23, 2018
 #1
avatar+101085 
+1

y =   x^2 + 2x  + 7

y  =  6x  + b

 

Set these equal

 

x^2 + 2x  + 7   =  6x + b      rearrange as

 

x^2 -  4x  +  (7 - b)  = 0

 

If this only has one solution point....it must be that

 

(-4)^2  - 4(7 - b)   =  0

 

16  - 28  +  4b  = 0

 

-12   +  4b  =  0

 

-12   =  -4b       divide both sides by  -4

 

3  = b

 

This graph shows the intersection point of  (2, 15)

 

https://www.desmos.com/calculator/mlvins5guo

 

 

 

cool cool cool

 Jan 23, 2018

14 Online Users

avatar
avatar