+0  
 
0
238
1
avatar

If the parabola $y_1 = x^2 + 2x + 7$ and the line $y_2 = 6x + b$ intersect at only one point, what is the value of $b$?

Guest Jan 23, 2018
 #1
avatar+89852 
+1

y =   x^2 + 2x  + 7

y  =  6x  + b

 

Set these equal

 

x^2 + 2x  + 7   =  6x + b      rearrange as

 

x^2 -  4x  +  (7 - b)  = 0

 

If this only has one solution point....it must be that

 

(-4)^2  - 4(7 - b)   =  0

 

16  - 28  +  4b  = 0

 

-12   +  4b  =  0

 

-12   =  -4b       divide both sides by  -4

 

3  = b

 

This graph shows the intersection point of  (2, 15)

 

https://www.desmos.com/calculator/mlvins5guo

 

 

 

cool cool cool

CPhill  Jan 23, 2018

34 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.