+0  
 
0
295
1
avatar

If $F(a, b, c, d) = a^b + c ^ d$, what is the value of $b$ such that $F(4, b, 2, 3) = 12$?

Guest Jun 17, 2017

Best Answer 

 #1
avatar+7324 
+3

F(a, b, c, d)  =  ab + cd        Replace  a  with  4  ,  c  with  2  ,  and  d  with  3  .

F(4, b, 2, 3)  =  4b + 23

 

F(4, b, 2, 3)  =  12               Replace   F(4, b, 2, 3)   with   4b + 23

4b + 23  =  12                       23  =  8

4b + 8   =  12                       Subtract  8  from both sides of the equation.

4b  =  12 - 8

4b  =  4

4b  =  41

 b  =  1

hectictar  Jun 17, 2017
 #1
avatar+7324 
+3
Best Answer

F(a, b, c, d)  =  ab + cd        Replace  a  with  4  ,  c  with  2  ,  and  d  with  3  .

F(4, b, 2, 3)  =  4b + 23

 

F(4, b, 2, 3)  =  12               Replace   F(4, b, 2, 3)   with   4b + 23

4b + 23  =  12                       23  =  8

4b + 8   =  12                       Subtract  8  from both sides of the equation.

4b  =  12 - 8

4b  =  4

4b  =  41

 b  =  1

hectictar  Jun 17, 2017

21 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.