We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
70
1
avatar

Let \(a,b,\) and \(t\) be real numbers such that \(a + b = t.\) Find, in terms of \(t,\) the minimum value of \(a^2 + b^2.\)

 Apr 25, 2019

Best Answer 

 #1
avatar+5226 
+1

\(b=t-a\\ a^2+b^2 = a^2 + (t-a)^2 = \\ 2a^2 - 2at + t^2 = \\ 2\left(a-\dfrac t 2 \right)^2 + \dfrac{t^2}{2}\\ \text{This clearly has a minimum value of }\dfrac{t^2}{2} \text{ at }a = \dfrac t 2\)

.
 Apr 26, 2019
 #1
avatar+5226 
+1
Best Answer

\(b=t-a\\ a^2+b^2 = a^2 + (t-a)^2 = \\ 2a^2 - 2at + t^2 = \\ 2\left(a-\dfrac t 2 \right)^2 + \dfrac{t^2}{2}\\ \text{This clearly has a minimum value of }\dfrac{t^2}{2} \text{ at }a = \dfrac t 2\)

Rom Apr 26, 2019

11 Online Users

avatar