+0  
 
0
219
1
avatar

2x^2-x-1<0

Guest May 28, 2017
 #1
avatar+7155 
+2

First let's find what x values make the expression equal to zero.

2x2 - x - 1 = 0

 

Divide through by 2.

x2 - (1/2)x - (1/2) = 0

 

What two numbers add to -1/2   and   multiply to -1/2   ? →  -1 and 1/2

So we can factor this

(x - 1)(x + 1/2) = 0

 

Set each factor equal to zero and solve for x.

x - 1 = 0          x + 1/2 = 0

x = 1               x = -1/2

 

So, the interval that makes the expression less than zero will be

either     ( - ∞ , -1/2 ) \(\cup\) ( 1 , ∞ )     or     ( -1/2 , 1 )

 

Test a point in the first interval, say -1 .

2(-1)2 - (-1) - 1 < 0

2 < 0     false

 

Test a point in the second interval, say 0 .

2(0)2 - 0 - 1 < 0

-1 < 0     true

 

So, the x-values which make the expression less than zero must be in the interval ( -1/2 , 1 )

hectictar  May 28, 2017

4 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.