1. Let x and y be real numbers whose absolute values are different and that satisfy
x3=20x+7yy3=7x+20y
Find xy.
I.II.(1)x3=20x+7y+−(2)y3=7x+20y
(I.)x3+y3=20x+7y+7x+20yx3+y3=27x+27yx3+y3=27(x+y)x3+y3=(x+y)(x2−xy+y2)(x+y)(x2−xy+y2)=27(x+y)x2−xy+y2=27
(II.)x3−y3=20x+7y−(7x+20y)x3−y3=13x−13yx3−y3=13(x−y)x3−y3=(x−y)(x2+xy+y2)(x−y)(x2+xy+y2)=13(x−y)x2+xy+y2=13
(1)x2−xy+y2=27(2)x2+xy+y2=13(2)−(1):x2+xy+y2−(x2−xy+y2)=13−27x2+xy+y2−x2+xy−y2=−14xy+xy=−142xy=−14xy=−7
1. Let x and y be real numbers whose absolute values are different and that satisfy
x3=20x+7yy3=7x+20y
Find xy.
I.II.(1)x3=20x+7y+−(2)y3=7x+20y
(I.)x3+y3=20x+7y+7x+20yx3+y3=27x+27yx3+y3=27(x+y)x3+y3=(x+y)(x2−xy+y2)(x+y)(x2−xy+y2)=27(x+y)x2−xy+y2=27
(II.)x3−y3=20x+7y−(7x+20y)x3−y3=13x−13yx3−y3=13(x−y)x3−y3=(x−y)(x2+xy+y2)(x−y)(x2+xy+y2)=13(x−y)x2+xy+y2=13
(1)x2−xy+y2=27(2)x2+xy+y2=13(2)−(1):x2+xy+y2−(x2−xy+y2)=13−27x2+xy+y2−x2+xy−y2=−14xy+xy=−142xy=−14xy=−7