+0

# Help

0
375
1

w What is twice the nonnegative difference between the solutions of the equation \$x^2-7x-4=40\$?

Dec 29, 2017

#1
+8437
+1

First we need to find the solutions of the equation...

x2 - 7x - 4  =  40

Subtract  40  from both sides so that the right side is zero.

x2 - 7x - 44  =  0

Now we can factor the left side like this..

(x + 4)(x - 11)  =  0

Set each factor equal to zero and solve each for  x .

x + 4  =  0         or          x - 11  =  0

x  =  -4              or          x  =  11

The solutions of the equation are  -4  and  11 .

Twice the nonnegative difference of  -4  and  11  is...

2 * | -4 - 11 |   =   2 * | -15 |   =   2 * 15   =   30

Dec 29, 2017
edited by hectictar  Dec 29, 2017

#1
+8437
+1

First we need to find the solutions of the equation...

x2 - 7x - 4  =  40

Subtract  40  from both sides so that the right side is zero.

x2 - 7x - 44  =  0

Now we can factor the left side like this..

(x + 4)(x - 11)  =  0

Set each factor equal to zero and solve each for  x .

x + 4  =  0         or          x - 11  =  0

x  =  -4              or          x  =  11

The solutions of the equation are  -4  and  11 .

Twice the nonnegative difference of  -4  and  11  is...

2 * | -4 - 11 |   =   2 * | -15 |   =   2 * 15   =   30

hectictar Dec 29, 2017
edited by hectictar  Dec 29, 2017