We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
83
1
avatar

Find all real solutions to \(2 \log_2 (x + 5) = \log_2 (x - 9) + \log_2 (x + 53) + 1.\) Enter all the solutions, separated by commas.

 Apr 1, 2019
 #1
avatar+5651 
0

\(2\log_2(x+5)-\log_2(x-9)-\log_2(x+53)=1\\ \log_2\left(\dfrac{(x+5)^2}{(x-9)(x+53)}\right)=1\\ \dfrac{(x+5)^2}{(x-9)(x+53)} = 2\)

 

\(x^2+10x+25 = 2x^2+88x-954\\ x^2+78x-979=0\\ (x+89)(x-11) = 0\\ x = -89, 11\)

 

\(\text{However }x=-89 \text{ ends up lying outside the domain of the log functions in the original equation}\\ \text{so it's not a valid solution. Thus }x=11 \text{ is the only solution}\)

.
 Apr 1, 2019

4 Online Users