We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
298
2
avatar+645 

 

Find all integers x for which there exists an integer y such that 1/x + 1/y = 1/7
 

 Jan 18, 2018
 #1
avatar
0

There are 5 pairs that satisfy the equation as follows:

 

x = -42 and y = 6

x = 6 and y = -42

x =8 and y = 56

x = 14 and y = 14

x = 56 and y = 8

 Jan 18, 2018
 #2
avatar+103122 
+1

1/x  +  1/y   =   1/7

 

[ x + y ] /  [xy]  =  1/7

 

7x +  7y   =  xy

 

7y -  xy   = -  7x

 

y [ 7  -  x ]  =  - 7x

 

y  =   [  7x ]  /  [ x -  7  ]

 

Note that  as  x ⇒  ±inf,  y ⇒  7      

 

y will  be an integer  when

 

x  =  -42    y   =   6   

{no need to  test  any  x  values less than this since y will be < 7}

x  =   6      y  =  - 42

x =   8       y  =    56

x  =  14     y  =   14

x =  56      y  =   8 

{no need to test any x values more than this since y will be > 7}

 

 

cool cool cool

 Jan 18, 2018
edited by CPhill  Jan 18, 2018

4 Online Users

avatar