Note :
sin (70) = sin (60 + 10)
cos (50) = cos (60 -10)
sin (260) = - sin (80) = -sin (90 - 10)
cos (280) = cos (80) = cos (90 - 10)
So we have
sin (70) = sin (60 + 10) = sin (60)cos(10) + sin(10)sin (60)
cos (50) = cos (60 - 10) = cos (60)cos(10) + sin (60)sin (10)
So sin (70) cos(50) =
[sin ( 60) cos (10) + sin (10)cos(60) ] [ cos (60)cos(10) + sin (60)sin (10) ] =
[ sin (60)cos(60) cos^2(10) + sin (10)cos(60)cos(60)cos(10) + sin(60)sin(60)sin (10)cos(10) + sin (60) (cos(60) sIn^2 (10)] =
[ sin (60)cos(60) ( sin^2 (10) + cos^2(10) ) + sin(10)cos(10) ( sin^2(60) + cos^2(60) ] =
[ sin (60)cos(60) (1)+ sin (10) cos(10) (1) ] =
[sin (60)cos(60) + sin (10)cos(10) ]
sin (260) = -sin(90 -10) = - [ sin (90 ) cos(10) - sin (10) cos(90) ] = - cos(10)
cos (280) = cos (90 -10) = cos (90)cos(10) + sin (10) sin (90) = sin (10)
So
sin (260) cos (280) = -cos (10) sin(10)
So puting this all together, we have
sin (70) cos (50) + sin (260)cos(280) =
[ sin(60)cos(60) + sin (10)cos(10)] + [ -cos (10)] [ sin (10)] =
[√3/2 * 1/2] + sin (10)cos(10) - sin (10)cos(10) =
√3 / 4