how do i isolate x in y=b∗x^a?
\(\begin{array}{rcll} y &=& b\cdot x^a \qquad & | \qquad :b\\ \frac{y}{b} &=& x^a \qquad & | \qquad 1^{\frac{1}{a}}\\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{ a\cdot \frac{1}{a} } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{\frac{a}{a} } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{1 } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x \\ \end{array}\)
how do i isolate x in y=b∗x^a?
\(\begin{array}{rcll} y &=& b\cdot x^a \qquad & | \qquad :b\\ \frac{y}{b} &=& x^a \qquad & | \qquad 1^{\frac{1}{a}}\\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{ a\cdot \frac{1}{a} } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{\frac{a}{a} } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x^{1 } \\ \left( \frac{y}{b} \right)^{\frac{1}{a}} &=& x \\ \end{array}\)