We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
45
1
avatar

Find the projection of \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) onto the plane \(3x - y + 4z = 0.\)

 Sep 2, 2019
 #1
avatar+23086 
+2

Find the projection of \(\begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}\) onto the plane \(3x - y + 4z = 0\).

\(\text{Let $\vec{P}= \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}$}\)

 

1.

Normal vector \(\mathbf{\vec{n}}\)

\(\begin{array}{|rcll|} \hline \vec{n} &=& \begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \quad | \quad \text{plane: }{\color{red}3}x {\color{red}-1}y + {\color{red}4}z = 0 \\ \hline \end{array}\) 

 

2. \(\mathbf{\vec{P}_{Proj.}}\)

\(\begin{array}{|rcll|} \hline \mathbf{\vec{P}_{Proj.}} &=& \mathbf{\vec{P}+\lambda\vec{n}} \\\\ \vec{P}_{Proj.} &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+\lambda\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \\\\ x_{Proj.} &=& 1+3\lambda \\ y_{Proj.} &=& 2-\lambda \\ z_{Proj.} &=& 3+4\lambda \\ \hline \end{array} \)

 

3. \(\mathbf{\lambda}\)

\(\begin{array}{|rcll|} \hline 3x_{Proj.} - y_{Proj.} + 4z_{Proj.} &=& 0 \\ 3(1+3\lambda) - (2-\lambda) + 4(3+4\lambda) &=& 0 \\ 3+9\lambda-2+\lambda+12+16\lambda &=& 0 \\ 26\lambda &=& -13 \\\\ \lambda &=& -\dfrac{13}{26} \\\\ \mathbf{\lambda} &=& -\mathbf{\dfrac{1}{2}} \\ \hline \end{array}\)

 

4.
\(\mathbf{\vec{P}_{Proj.}}\)

\(\begin{array}{|rcll|} \hline \vec{P}_{Proj.} &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}+\lambda\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \quad | \quad \lambda = -\dfrac{1}{2} \\\\ &=& \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix} -\dfrac{1}{2}\begin{pmatrix} 3 \\ -1 \\ 4 \end{pmatrix} \\\\ &=& \begin{pmatrix} 1-\dfrac{3}{2} \\\\ 2+\dfrac{1}{2} \\\\ 3-\dfrac{4}{2} \end{pmatrix} \\\\ \mathbf{\vec{P}_{Proj.}}&=& \begin{pmatrix} \mathbf{-\dfrac{1}{2}} \\\\ \mathbf{\dfrac{5}{2}} \\\\ \mathbf{1} \end{pmatrix} \\ \hline \end{array}\)

 

 

laugh

 Sep 3, 2019

33 Online Users

avatar