+0  
 
0
96
1
avatar

1. Find the center of the circle with equation $9x^2-18x+9y^2+36y+44=0$

2.The graph of $y=ax^2+bx+c$ is given below, where $a$, $b$, and $c$ are integers. Find $a$. 

Guest Feb 21, 2018

Best Answer 

 #1
avatar+12266 
+2

1. 9x^2-18x      +9y^2 + 36y      = -44    divide thru by 9

      x^2 - 2x        + y^2 +4          = -44/9    'complete the square' for x and y

    ( x-1)^2          + (y+2)^2         = -44/9  + 1 + 4

     (x-1)^2 + (y+2)^2   =   1/9      Now this is standard form for a circle (x-h)^2 + (y-k)^2 = r^2 

where center is h,k  and r = radius   

center =  1,-2    radius = 1/3

 

2. Let's set this up as vetex form for a parabola     h, k = vertex = 1,3  (from graph)

   so      a(x-1)^2  + 3 =y   is the equation for this parabola...now let's find 'a'

           a convineint point which must satisfy this equation (on the graph) is  0,1 ...substitute this

 

          a (0-1)^2 + 3 = 1

              a+3 = 1

               a= -2      so the equation becomes  y=   -2 (x-1)^2 +3

ElectricPavlov  Feb 21, 2018
edited by ElectricPavlov  Feb 21, 2018
edited by ElectricPavlov  Feb 21, 2018
Sort: 

1+0 Answers

 #1
avatar+12266 
+2
Best Answer

1. 9x^2-18x      +9y^2 + 36y      = -44    divide thru by 9

      x^2 - 2x        + y^2 +4          = -44/9    'complete the square' for x and y

    ( x-1)^2          + (y+2)^2         = -44/9  + 1 + 4

     (x-1)^2 + (y+2)^2   =   1/9      Now this is standard form for a circle (x-h)^2 + (y-k)^2 = r^2 

where center is h,k  and r = radius   

center =  1,-2    radius = 1/3

 

2. Let's set this up as vetex form for a parabola     h, k = vertex = 1,3  (from graph)

   so      a(x-1)^2  + 3 =y   is the equation for this parabola...now let's find 'a'

           a convineint point which must satisfy this equation (on the graph) is  0,1 ...substitute this

 

          a (0-1)^2 + 3 = 1

              a+3 = 1

               a= -2      so the equation becomes  y=   -2 (x-1)^2 +3

ElectricPavlov  Feb 21, 2018
edited by ElectricPavlov  Feb 21, 2018
edited by ElectricPavlov  Feb 21, 2018

11 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy