We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
314
1
avatar

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

 May 7, 2018
 #1
avatar+22581 
+2

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

 

\(\text{Let $a_n = a_1q^{n-1}$} \\ \text{Let $a_{n-1} = a_1q^{n-2}$} \\ \text{Let $a_{n+1} = a_1q^{n}$}\)

 

\(\begin{array}{|rcll|} \hline a_{n-1}a_{n+1} &=& a_1q^{n-2}a_1q^{n} \\ &=& a_1^2q^{n-2}q^{n} \\ &=& a_1^2q^{n+n-2} \\ &=& a_1^2q^{2n-2} \\ &=& a_1^2q^{2(n-1)} \\ &=& a_1^2(q^{n-1})^2 \\\\ \sqrt{a_{n-1}a_{n+1}} &=& a_1 (q^{n-1}) \\ &=& a_n \\ \hline \end{array}\)

 

Formula:
\(\begin{array}{|rcll|} \hline a_n = \sqrt{a_{n-1}a_{n+1}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & a &=& \sqrt{6b} \\ (2) & a &=& \sqrt{\frac1b\cdot 54} \\\\ & a=\sqrt{6b} &=& \sqrt{\frac1b\cdot 54} \\ & 6b &=& \frac1b\cdot 54 \\ & b^2 &=& \frac{54}{6} \\ & b^2 &=& 9 \\ & \mathbf{ b } & \mathbf{=} & \mathbf{3} \\ \hline \end{array} \)

 

\(a=\ ?\)

\(\begin{array}{|rcll|} \hline a &=& \sqrt{6b} \quad & | \quad b= 3 \\ a &=& \sqrt{6\cdot 3} \\ a &=& \sqrt{2\cdot 3^2} \\ \mathbf{a} &\mathbf{=}& \mathbf{3\sqrt{2}} \\ \hline \end{array}\)

 

laugh

 May 7, 2018

11 Online Users