+0  
 
0
144
1
avatar

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

Guest May 7, 2018
 #1
avatar+20115 
+1

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

 

\(\text{Let $a_n = a_1q^{n-1}$} \\ \text{Let $a_{n-1} = a_1q^{n-2}$} \\ \text{Let $a_{n+1} = a_1q^{n}$}\)

 

\(\begin{array}{|rcll|} \hline a_{n-1}a_{n+1} &=& a_1q^{n-2}a_1q^{n} \\ &=& a_1^2q^{n-2}q^{n} \\ &=& a_1^2q^{n+n-2} \\ &=& a_1^2q^{2n-2} \\ &=& a_1^2q^{2(n-1)} \\ &=& a_1^2(q^{n-1})^2 \\\\ \sqrt{a_{n-1}a_{n+1}} &=& a_1 (q^{n-1}) \\ &=& a_n \\ \hline \end{array}\)

 

Formula:
\(\begin{array}{|rcll|} \hline a_n = \sqrt{a_{n-1}a_{n+1}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & a &=& \sqrt{6b} \\ (2) & a &=& \sqrt{\frac1b\cdot 54} \\\\ & a=\sqrt{6b} &=& \sqrt{\frac1b\cdot 54} \\ & 6b &=& \frac1b\cdot 54 \\ & b^2 &=& \frac{54}{6} \\ & b^2 &=& 9 \\ & \mathbf{ b } & \mathbf{=} & \mathbf{3} \\ \hline \end{array} \)

 

\(a=\ ?\)

\(\begin{array}{|rcll|} \hline a &=& \sqrt{6b} \quad & | \quad b= 3 \\ a &=& \sqrt{6\cdot 3} \\ a &=& \sqrt{2\cdot 3^2} \\ \mathbf{a} &\mathbf{=}& \mathbf{3\sqrt{2}} \\ \hline \end{array}\)

 

laugh

heureka  May 7, 2018

7 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.