+0  
 
0
37
1
avatar

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

Guest May 7, 2018
Sort: 

1+0 Answers

 #1
avatar+19344 
+1

We have two geometric sequences of positive real numbers:

6,a,b and 1/b,a,54

Solve for a

 

\(\text{Let $a_n = a_1q^{n-1}$} \\ \text{Let $a_{n-1} = a_1q^{n-2}$} \\ \text{Let $a_{n+1} = a_1q^{n}$}\)

 

\(\begin{array}{|rcll|} \hline a_{n-1}a_{n+1} &=& a_1q^{n-2}a_1q^{n} \\ &=& a_1^2q^{n-2}q^{n} \\ &=& a_1^2q^{n+n-2} \\ &=& a_1^2q^{2n-2} \\ &=& a_1^2q^{2(n-1)} \\ &=& a_1^2(q^{n-1})^2 \\\\ \sqrt{a_{n-1}a_{n+1}} &=& a_1 (q^{n-1}) \\ &=& a_n \\ \hline \end{array}\)

 

Formula:
\(\begin{array}{|rcll|} \hline a_n = \sqrt{a_{n-1}a_{n+1}} \\ \hline \end{array}\)

 

\(\begin{array}{|lrcll|} \hline (1) & a &=& \sqrt{6b} \\ (2) & a &=& \sqrt{\frac1b\cdot 54} \\\\ & a=\sqrt{6b} &=& \sqrt{\frac1b\cdot 54} \\ & 6b &=& \frac1b\cdot 54 \\ & b^2 &=& \frac{54}{6} \\ & b^2 &=& 9 \\ & \mathbf{ b } & \mathbf{=} & \mathbf{3} \\ \hline \end{array} \)

 

\(a=\ ?\)

\(\begin{array}{|rcll|} \hline a &=& \sqrt{6b} \quad & | \quad b= 3 \\ a &=& \sqrt{6\cdot 3} \\ a &=& \sqrt{2\cdot 3^2} \\ \mathbf{a} &\mathbf{=}& \mathbf{3\sqrt{2}} \\ \hline \end{array}\)

 

laugh

heureka  May 7, 2018

20 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy