+0  
 
0
86
1
avatar

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

Guest Mar 21, 2018

Best Answer 

 #1
avatar+19370 
+1

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

\(\begin{array}{|rcll|} \hline f(x) &=& ax+b \\ \hline y &=& ax+b \\\\ ax &=& y-b \\\\ x &=& \dfrac{y-b}{a} \quad & | \quad x \leftrightarrow y \\\\ y &=& \dfrac{x-b}{a} \\\\ \mathbf{f^{-1}(x)} &\mathbf{=}& \mathbf{\dfrac{x-b}{a}} \\ \hline g(x) &=& 3x+2 \\ g(x) &=& 2f^{-1}(x) \\ 3x+2 &=& 2\left( \dfrac{x-b}{a} \right) \\\\ \dfrac{3x+2}{2} &=& \dfrac{x-b}{a} \\\\ \mathbf{\dfrac{3}{2}x+1} &\mathbf{=}& \mathbf{\dfrac{1}{a}x-\dfrac{b}{a}} \quad & | \quad \text{compare} \\\\ \hline \dfrac{3}{2} &=& \dfrac{1}{a} \\ \mathbf{a} &\mathbf{=}& \mathbf{\dfrac{2}{3}} \\ \hline 1 &=& -\dfrac{b}{a} \\ \dfrac{b}{a} &=& -1 \\ b &=& -a \\ \mathbf{b} &\mathbf{=}& \mathbf{-\dfrac{2}{3}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{a+b}{2} &=& \dfrac{ \dfrac{2}{3}-\dfrac{2}{3} }{2}\\\\ \mathbf{\dfrac{a+b}{2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

laugh

heureka  Mar 22, 2018
Sort: 

1+0 Answers

 #1
avatar+19370 
+1
Best Answer

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

\(\begin{array}{|rcll|} \hline f(x) &=& ax+b \\ \hline y &=& ax+b \\\\ ax &=& y-b \\\\ x &=& \dfrac{y-b}{a} \quad & | \quad x \leftrightarrow y \\\\ y &=& \dfrac{x-b}{a} \\\\ \mathbf{f^{-1}(x)} &\mathbf{=}& \mathbf{\dfrac{x-b}{a}} \\ \hline g(x) &=& 3x+2 \\ g(x) &=& 2f^{-1}(x) \\ 3x+2 &=& 2\left( \dfrac{x-b}{a} \right) \\\\ \dfrac{3x+2}{2} &=& \dfrac{x-b}{a} \\\\ \mathbf{\dfrac{3}{2}x+1} &\mathbf{=}& \mathbf{\dfrac{1}{a}x-\dfrac{b}{a}} \quad & | \quad \text{compare} \\\\ \hline \dfrac{3}{2} &=& \dfrac{1}{a} \\ \mathbf{a} &\mathbf{=}& \mathbf{\dfrac{2}{3}} \\ \hline 1 &=& -\dfrac{b}{a} \\ \dfrac{b}{a} &=& -1 \\ b &=& -a \\ \mathbf{b} &\mathbf{=}& \mathbf{-\dfrac{2}{3}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{a+b}{2} &=& \dfrac{ \dfrac{2}{3}-\dfrac{2}{3} }{2}\\\\ \mathbf{\dfrac{a+b}{2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

laugh

heureka  Mar 22, 2018

15 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy