We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
672
1
avatar

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

 Mar 21, 2018

Best Answer 

 #1
avatar+22572 
+2

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

\(\begin{array}{|rcll|} \hline f(x) &=& ax+b \\ \hline y &=& ax+b \\\\ ax &=& y-b \\\\ x &=& \dfrac{y-b}{a} \quad & | \quad x \leftrightarrow y \\\\ y &=& \dfrac{x-b}{a} \\\\ \mathbf{f^{-1}(x)} &\mathbf{=}& \mathbf{\dfrac{x-b}{a}} \\ \hline g(x) &=& 3x+2 \\ g(x) &=& 2f^{-1}(x) \\ 3x+2 &=& 2\left( \dfrac{x-b}{a} \right) \\\\ \dfrac{3x+2}{2} &=& \dfrac{x-b}{a} \\\\ \mathbf{\dfrac{3}{2}x+1} &\mathbf{=}& \mathbf{\dfrac{1}{a}x-\dfrac{b}{a}} \quad & | \quad \text{compare} \\\\ \hline \dfrac{3}{2} &=& \dfrac{1}{a} \\ \mathbf{a} &\mathbf{=}& \mathbf{\dfrac{2}{3}} \\ \hline 1 &=& -\dfrac{b}{a} \\ \dfrac{b}{a} &=& -1 \\ b &=& -a \\ \mathbf{b} &\mathbf{=}& \mathbf{-\dfrac{2}{3}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{a+b}{2} &=& \dfrac{ \dfrac{2}{3}-\dfrac{2}{3} }{2}\\\\ \mathbf{\dfrac{a+b}{2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

laugh

 Mar 22, 2018
 #1
avatar+22572 
+2
Best Answer

Define the function $g(x)=3x+2$. If $g(x)=2f^{-1}(x)$ and $f^{-1}(x)$ is the inverse of the function $f(x)=ax+b$, find $\dfrac{a+b}{2}$.

\(\begin{array}{|rcll|} \hline f(x) &=& ax+b \\ \hline y &=& ax+b \\\\ ax &=& y-b \\\\ x &=& \dfrac{y-b}{a} \quad & | \quad x \leftrightarrow y \\\\ y &=& \dfrac{x-b}{a} \\\\ \mathbf{f^{-1}(x)} &\mathbf{=}& \mathbf{\dfrac{x-b}{a}} \\ \hline g(x) &=& 3x+2 \\ g(x) &=& 2f^{-1}(x) \\ 3x+2 &=& 2\left( \dfrac{x-b}{a} \right) \\\\ \dfrac{3x+2}{2} &=& \dfrac{x-b}{a} \\\\ \mathbf{\dfrac{3}{2}x+1} &\mathbf{=}& \mathbf{\dfrac{1}{a}x-\dfrac{b}{a}} \quad & | \quad \text{compare} \\\\ \hline \dfrac{3}{2} &=& \dfrac{1}{a} \\ \mathbf{a} &\mathbf{=}& \mathbf{\dfrac{2}{3}} \\ \hline 1 &=& -\dfrac{b}{a} \\ \dfrac{b}{a} &=& -1 \\ b &=& -a \\ \mathbf{b} &\mathbf{=}& \mathbf{-\dfrac{2}{3}} \\ \hline \end{array} \)

 

\(\begin{array}{|rcll|} \hline \dfrac{a+b}{2} &=& \dfrac{ \dfrac{2}{3}-\dfrac{2}{3} }{2}\\\\ \mathbf{\dfrac{a+b}{2}} &\mathbf{=}& \mathbf{0} \\ \hline \end{array}\)

 

laugh

heureka Mar 22, 2018

11 Online Users

avatar