+0  
 
0
102
1
avatar

Suppose functions $g$ and $f$ have the properties that $g(x)=3f^{-1}(x)$ and $f(x)=\frac{24}{x+3}$. For what value of $x$ does $g(x)=15$?

Guest Mar 20, 2018
 #1
avatar+7177 
+2

Suppose functions  \(g\)  and  \(f\)  have the properties that  \(g(x)=3f^{-1}(x)\)  and  \(f(x)=\frac{24}{x+3}\) .

For what value of  \(x\)  does  \(g(x)=15\) ?

 

 

g(x)  =  3f-1(x)

                            Since  g(x)  =  15 ,  we can plug in  15  for  g(x) .

15  =  3f-1(x)

                            Divide both sides of the equation by  3 .

5  =  f-1(x)

                            Take  f  of both sides...

f(5)  =  x

                            And  f(5)  =  \(\frac{24}{5+3}\)    so....

\(\frac{24}{5+3}\)   =   x

 

\(\frac{24}{8}\)  =  x

 

3  =  x

hectictar  Mar 20, 2018

2 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.