+0  
 
0
92
2
avatar

Find the remainder when 5^67 (^ means exponent) is divided by 11.

 Jul 7, 2021
 #1
avatar+26213 
+2

Find the remainder when \(5^{67}\) is divided by \(11\).

 

\(\begin{array}{|rcll|} \hline 5^{67} \pmod{11} &\equiv& 5^{5*13+2}\pmod{11} \\ &\equiv& \left(5^5 \right)^{13}5^2\pmod{11} \quad | \quad 5^5 \equiv 1\pmod{11} \\ &\equiv& 1^{13}5^2\pmod{11} \\ &\equiv& 5^2\pmod{11} \\ &\equiv& 25\pmod{11} \\ \mathbf{5^{67} \pmod{11}} &\equiv& \mathbf{ {\color{red}3}\pmod{11}} \\ \hline \end{array}\)

 

The remainder is 3.

 

laugh

 Jul 7, 2021
 #2
avatar
0

thanks heureka laugh

Guest Jul 7, 2021

39 Online Users

avatar