Processing math: 100%
 
+0  
 
0
511
2
avatar

{a×b×c=15b×c×d=30c×d×a=10d×a×b=6


Given a, b, c, d are four distinct natural numbers that satisfy the system of equations above.

Determine the value of a+b+c+d. 

 Jul 5, 2020
 #1
avatar+33657 
+1

As follows:

 

 Jul 5, 2020
 #2
avatar
0

Here's an alternative method.

abc=15, so, abcd=15d, so, abcd15=d(1).

Similarly,

abcd30=a,(2),abcd10=b,(3),abcd6=c,(4).

Adding  (1), (2), (3) and (4),

a+b+c+d=abcd(115+130+110+16)=abcd(1130)(5).

Multiplying the original four equations,

a3b3c3d3=15×30×10×6=23×33×53, so abcd=2×3×5=30.

Then, from (5),

a+b+c+d=30.(1130)=11.

 Jul 5, 2020

0 Online Users