{a×b×c=15b×c×d=30c×d×a=10d×a×b=6
Given a, b, c, d are four distinct natural numbers that satisfy the system of equations above.
Determine the value of a+b+c+d.
Here's an alternative method.
abc=15, so, abcd=15d, so, abcd15=d…(1).
Similarly,
abcd30=a,…(2),abcd10=b,…(3),abcd6=c,…(4).
Adding (1), (2), (3) and (4),
a+b+c+d=abcd(115+130+110+16)=abcd(1130)…(5).
Multiplying the original four equations,
a3b3c3d3=15×30×10×6=23×33×53, so abcd=2×3×5=30.
Then, from (5),
a+b+c+d=30.(1130)=11.