We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
104
1
avatar

if f(x) = -x^3 +3x^2 -2, find the coordinates of the point(s) where the tangent line is horizontal

 Nov 20, 2018

Best Answer 

 #1
avatar+22358 
+12

if f(x) = -x^3 +3x^2 -2, find the coordinates of the point(s) where the tangent line is horizontal

 

\(\begin{array}{|lrcllcl|} \hline & f(x) &=& -x^3+3x^2-2 \\\\ & \boxed{f'(x) = 0\ ?} \\\\ & \boxed{f'(x) = -3x^2+6x } \\ & -3x^2+6x &=& 0 \\ & x(-3x+6) &=& 0 \\ 1. & x &=& 0, \qquad & y &=& -0^3+3\cdot 0^2 - 2 \\ & && & y &=& -2 \\ & \text{Point}_1~ (0,-2) \\\\ 2. & -3x+6 &=& 0 \\ & 3x &=& 6 \\ & x &=& \dfrac{6}{3} \\ & x &=& 2, \qquad & y &=& -2^3+3\cdot 2^2 - 2 \\ & && & y &=& -8+12-2 \\ & && & y &=& 2 \\ & \text{Point}_2~ (2,2) \\ \hline \end{array}\)

 

 

laugh

 Nov 20, 2018
 #1
avatar+22358 
+12
Best Answer

if f(x) = -x^3 +3x^2 -2, find the coordinates of the point(s) where the tangent line is horizontal

 

\(\begin{array}{|lrcllcl|} \hline & f(x) &=& -x^3+3x^2-2 \\\\ & \boxed{f'(x) = 0\ ?} \\\\ & \boxed{f'(x) = -3x^2+6x } \\ & -3x^2+6x &=& 0 \\ & x(-3x+6) &=& 0 \\ 1. & x &=& 0, \qquad & y &=& -0^3+3\cdot 0^2 - 2 \\ & && & y &=& -2 \\ & \text{Point}_1~ (0,-2) \\\\ 2. & -3x+6 &=& 0 \\ & 3x &=& 6 \\ & x &=& \dfrac{6}{3} \\ & x &=& 2, \qquad & y &=& -2^3+3\cdot 2^2 - 2 \\ & && & y &=& -8+12-2 \\ & && & y &=& 2 \\ & \text{Point}_2~ (2,2) \\ \hline \end{array}\)

 

 

laugh

heureka Nov 20, 2018

10 Online Users