A line through the points $(2, -9)$ and $(j, 17)$ is parallel to the line $2x + 3y = 21$. What is the value of $j$?
A line through the points $(2, -9)$ and $(j, 17)$ is parallel to the line $2x + 3y = 21$.
What is the value of $j$?
\(\begin{array}{|lrcll|} \hline & 2x+3y&=& 21 \\\\ \text{Point$_1$} & 2\cdot 2+3\cdot (-9) &=& -23 \qquad \text{is parallel} \\ \text{Point$_2$} & 2\cdot j+3\cdot (17) &=& -23 \\ & 2\cdot j &=& -23 - 3\cdot (17) \\ & 2\cdot j &=& -23 - 51 \\ & 2\cdot j &=& -74 \\ & \mathbf{j} &\mathbf{=}& \mathbf{-37} \\ \hline \end{array} \)