We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
326
1
avatar+603 

A line through the points $(2, -9)$ and $(j, 17)$ is parallel to the line $2x + 3y = 21$. What is the value of $j$?

 Apr 19, 2018
 #1
avatar+22273 
+1

A line through the points $(2, -9)$ and $(j, 17)$ is parallel to the line $2x + 3y = 21$.

What is the value of $j$?

 

\(\begin{array}{|lrcll|} \hline & 2x+3y&=& 21 \\\\ \text{Point$_1$} & 2\cdot 2+3\cdot (-9) &=& -23 \qquad \text{is parallel} \\ \text{Point$_2$} & 2\cdot j+3\cdot (17) &=& -23 \\ & 2\cdot j &=& -23 - 3\cdot (17) \\ & 2\cdot j &=& -23 - 51 \\ & 2\cdot j &=& -74 \\ & \mathbf{j} &\mathbf{=}& \mathbf{-37} \\ \hline \end{array} \)

 

 

laugh

 Apr 19, 2018

21 Online Users

avatar
avatar