We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
83
3
avatar

Let a and b be nonzero complex numbers such that a^2 + ab + b^2 = 0. Evaluate \(\frac{a^9 + b^9}{(a + b)^9}.\)
 

 Jan 29, 2019
 #1
avatar+4789 
+2

answer is -2,

 

I don't have a simple answer yet.

 

Brute force works.

 Jan 29, 2019
 #2
avatar+27664 
+2

As follows

 

 Jan 30, 2019
 #3
avatar+21978 
+8

Let a and b be nonzero complex numbers such that a^2 + ab + b^2 = 0. Evaluate 

\(\dfrac{a^9 + b^9}{(a + b)^9}.\)

 

\(\begin{array}{|lrcl|} \hline 1. & a^2+ab+b^2 &=& 0 \\ & \mathbf{a^2+b^2} & \mathbf{=}& \mathbf{ -ab } \\\\ 2. & (a^2+b^2)^2 &=& a^2b^2 \\ & a^4+2a^2b^2+b^4 &=& a^2b^2 \\ &\mathbf {a^4+b^4 } &\mathbf{=}&\mathbf {-a^2b^2} \\\\ 3. & (a^2+b^2)(a^4+b^4) &=& (-ab)(-a^2b^2) \\ & a^6+a^2b^4+b^2a^4+b^6&=&a^3b^3 \\ &a^6+b^6+a^2b^2(a^2+b^2) &=& a^3b^3 \\ &a^6+b^6+a^2b^2(-ab) &=& a^3b^3 \\ & \mathbf{ a^6+b^6-a^3b^3 }& \mathbf{=}& \mathbf{a^3b^3} \\\\ 4. & (a+b)^2 &=& a^2+2ab+b^2 \\ & (a+b)^2-ab &=& a^2+ab+b^2 \quad | \quad a^2+ab+b^2 =0 \\ & (a+b)^2-ab &=& 0\\ & \mathbf{ (a+b)^2 } &\mathbf{ =}& \mathbf{ ab} \\\\ 5. &\left( (a+b)^2\right)^4 &=& a^4b^4 \\ & \mathbf{ (a+b)^8} & \mathbf{ =}& \mathbf{ a^4b^4} \\ \hline \end{array}\)

 

\(\begin{array}{|rcl|} \hline && \mathbf{\dfrac{a^9+b^9}{(a+b)^9} } \\\\ &=& \dfrac{(a+b)(a^2-ab+b^2)(a^6-a^3b^3+b^6) } {(a+b)^8(a+b) } \\\\ &=& \dfrac{(a^2-ab+b^2)(a^6-a^3b^3+b^6) } {(a+b)^8 } \\\\ &=& \dfrac{(a^2+b^2-ab )(a^6-a^3b^3+b^6) } {(a+b)^8 } \\\\ &=& \dfrac{(-ab-ab )(a^6-a^3b^3+b^6) } {(a+b)^8 } \\\\ &=& \dfrac{(-2ab)(a^6-a^3b^3+b^6) } {(a+b)^8 } \\\\ &=& \dfrac{(-2ab)(a^3b^3) } {a^4b^4 } \\\\ &=& \dfrac{-2a^4b^4 } {a^4b^4 } \\\\ & \mathbf{=} & \mathbf{-2 }\\ \hline \end{array}\)

 

laugh

 Jan 31, 2019

6 Online Users