tangent is cyclic
so the value of tangent is cyclic
so its converges to invinity
What is the value of ∞∑n=1(tan−1(√n)−tan−1(√n+1))?
I assume tan−1(x)=arctan(x)
∞∑n=1(arctan(√n)−arctan(√n+1))=n=1⏞arctan(√1)−arctan(√2)+n=2⏞arctan(√2)−arctan(√3)+n=3⏞arctan(√3)−arctan(√4)⋯+n=∞⏞arctan(√∞)−arctan(√∞+1)
shorten…
−arctan(√2)+arctan(√2)−arctan(√3)+arctan(√3)−arctan(√4)+arctan(√4)⋯−arctan(√∞)+arctan(√∞)=0
∞∑n=1(arctan(√n)−arctan(√n+1))=arctan(√1)−arctan(√∞+1)=arctan(1)−arctan(∞)=π4−π2=−π4=−0.7853981634