+0  
 
+1
58
1
avatar

Suppose $a$ and $x$ satisfy $x^2 + \left(a-\frac{1}{a}\right)x  - 1 = 0$. Solve for $x$ in terms of $a$.

Guest Jan 22, 2018
Sort: 

1+0 Answers

 #1
avatar+82489 
+1

\($x^2 + \left(a-\frac{1}{a}\right)x - 1 = 0$\)

 

x =   [  - (a - 1/a )  ± √  [  ( a - 1/a)^2  - 4(1)(-1) ] ] /  2    simplify

 

x  = [ (1/a -a)  ± √ [  a^2 - 2   +  (1/a)^2  +  4]  ] / 2

 

x = [    (1/a - a ] ± √ [  a^2  + 2 +   1/a^2  ] ]  / 2

 

x  =  [  (1/a - a)  ± √  [  ( a + 1/a)^2 ]  ]  / 2

 

x  =  [ (1/a - a)  ±  (a + 1/a) ]  / 2

 

So  either       

 

x  = [  ( 1/a - a)  +  (a + 1/a) ] / 2  ⇒  (2/a)/2   =    1/a

 

Or

 

 x  =  [  (1/a  - a)  -   ( a + 1/a) ]  / 2  ⇒  ( -2a) / 2  =     - a

 

 

cool cool cool

CPhill  Jan 22, 2018

8 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details