Let $c( a, b, c ) = \frac{a}{b} + \frac{b}{c} + \frac{c}{a}$. Compute $c(2, 12, 9)$.

Lightning Jul 6, 2018

#1**0 **

\(c(\textcolor{red}{a},\textcolor{blue}{b},\textcolor{green}{c})= \frac{\textcolor{red}{a}}{\textcolor{blue}{b}}+ \frac{\textcolor{blue}{b}}{\textcolor{green}{c}}+ \frac{\textcolor{green}{c}}{\textcolor{red}{a}};\\ c(\textcolor{red}{2},\textcolor{blue}{12},\textcolor{green}{9})= \frac{\textcolor{red}{2}}{\textcolor{blue}{12}}+ \frac{\textcolor{blue}{12}}{\textcolor{green}{9}}+ \frac{\textcolor{green}{9}}{\textcolor{red}{2}}\) | This shows the relationship of the input to the problem at hand. It is now necessary to convert all fractions to common denominators so that we can simplify the right-hand side. The LCM, in this case, is 36. |

\(c(a,b,c)=\frac{6}{36}+\frac{48}{36}+\frac{162}{36}\) | |

\(c(a,b,c)=\frac{216}{36}=6\) | That's quite a nice result, don't you think? |

TheXSquaredFactor Jul 7, 2018