+0  
 
0
44
1
avatar

Find all values of \(x \) such that \(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\) . If you find more than one value, then list your solutions in increasing order, separated by commas.

Guest Aug 28, 2018
 #1
avatar+19992 
0

Find all values of x such that 

\(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\)

\dfrac{x}{x+4} = -\dfrac{9}{x+3}.
If you find more than one value, then list your solutions in increasing order, separated by commas.

 

\(\text{ $x\ne -4$ and $x\ne -3$ }\)

 

\(\begin{array}{|rcll|} \hline \dfrac{x}{x+4} &=& -\dfrac{9}{x+3} \quad & | \quad \cdot (x+3) \\\\ \dfrac{x(x+3)}{x+4} &=& -9 \quad & | \quad \cdot (x+4) \\\\ x(x+3) &=& -9(x+4) \\\\ x^2+3x &=& -9x -36 \quad & | \quad +9x \\\\ x^2+12x &=& -36 \quad & | \quad +36 \\\\ x^2+12x+36 &=&0 \\\\ x &=& \dfrac{-12\pm \sqrt{12^2 -4\cdot 36 } }{2} \\\\ x &=& \dfrac{-12\pm \sqrt{144 -144 } }{2} \\\\ x &=& \dfrac{-12\pm \sqrt{0} }{2} \\\\ x &=& \dfrac{-12\pm 0 }{2} \\\\ x &=& \dfrac{-12}{2} \\\\ \mathbf{x} &\mathbf{=}& \mathbf{-6} \\ \hline \end{array}\)

 

laugh

heureka  Aug 29, 2018

9 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.