We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
158
1
avatar

Find all values of \(x \) such that \(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\) . If you find more than one value, then list your solutions in increasing order, separated by commas.

 Aug 28, 2018
 #1
avatar+22172 
+3

Find all values of x such that 

\(\dfrac{x}{x+4} = -\dfrac{9}{x+3}\)

\dfrac{x}{x+4} = -\dfrac{9}{x+3}.
If you find more than one value, then list your solutions in increasing order, separated by commas.

 

\(\text{ $x\ne -4$ and $x\ne -3$ }\)

 

\(\begin{array}{|rcll|} \hline \dfrac{x}{x+4} &=& -\dfrac{9}{x+3} \quad & | \quad \cdot (x+3) \\\\ \dfrac{x(x+3)}{x+4} &=& -9 \quad & | \quad \cdot (x+4) \\\\ x(x+3) &=& -9(x+4) \\\\ x^2+3x &=& -9x -36 \quad & | \quad +9x \\\\ x^2+12x &=& -36 \quad & | \quad +36 \\\\ x^2+12x+36 &=&0 \\\\ x &=& \dfrac{-12\pm \sqrt{12^2 -4\cdot 36 } }{2} \\\\ x &=& \dfrac{-12\pm \sqrt{144 -144 } }{2} \\\\ x &=& \dfrac{-12\pm \sqrt{0} }{2} \\\\ x &=& \dfrac{-12\pm 0 }{2} \\\\ x &=& \dfrac{-12}{2} \\\\ \mathbf{x} &\mathbf{=}& \mathbf{-6} \\ \hline \end{array}\)

 

laugh

 Aug 29, 2018

25 Online Users

avatar