∞∑k=1 xk=x1−xdifferentiate both sidesddx∞∑k=1 xk=ddxx1−x∞∑k=1 kxk−1=1(1−x)2mutliply both sides by x∞∑k=1 kxk=x(1−x)2let x=12∞∑k=1 k2k=12(1−12)2=2
Evaluate the sum
121+222+323+⋯+k2k+⋯
\large{\dfrac{1}{2^1} + \dfrac{2}{2^2} + \dfrac{3}{2^3} + \cdots + \dfrac{k}{2^k} + \cdots}
Binomial power:
(1−x)−2=(−20)−(−21)x+(−22)x2−(−23)x3+(−24)x4−(−25)x5+−⋯∞=1−(−2)x+(−2)(−2−1)2⋅1x2−(−2)(−2−1)(−2−2)3⋅2⋅1x3+(−2)(−2−1)(−2−2)(−2−3)4⋅3⋅2⋅1x4−(−2)(−2−1)(−2−2)(−2−3)(−2−4)5⋅4⋅3⋅2⋅1x5+−⋯∞=1+2x+(−2)(−3)2x2−(−2)(−3)(−4)3⋅2x3+(−2)(−3)(−4)(−5)4⋅3⋅2x4−(−2)(−3)(−4)(−5)(−6)5⋅4⋅3⋅2x5+−⋯∞=1+2x+3x2+4x3+5x4+6x5+⋯∞x⋅(1−x)−2=x⋅(1+2x+3x2+4x3+5x4+6x5+⋯∞)=x+2x2+3x3+4x4+5x5+6x6+⋯+kxk+⋯∞|x=1212(1−12)−2=121+222+323+424+525+626+⋯+k2k+⋯∞12(12)−2=121+222+323+424+525+626+⋯+k2k+⋯∞12(21)2=121+222+323+424+525+626+⋯+k2k+⋯∞42=121+222+323+424+525+626+⋯+k2k+⋯∞2=121+222+323+424+525+626+⋯+k2k+⋯∞
121+222+323+424+525+626+⋯+k2k+⋯∞=2