Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
0
785
2
avatar+1245 

Evaluate the sum 121+222+323++k2k+

 Sep 4, 2018

Best Answer 

 #1
avatar+6251 
+2

k=1 xk=x1xdifferentiate both sidesddxk=1 xk=ddxx1xk=1 kxk1=1(1x)2mutliply both sides by xk=1 kxk=x(1x)2let x=12k=1 k2k=12(112)2=2

.
 Sep 5, 2018
 #1
avatar+6251 
+2
Best Answer

k=1 xk=x1xdifferentiate both sidesddxk=1 xk=ddxx1xk=1 kxk1=1(1x)2mutliply both sides by xk=1 kxk=x(1x)2let x=12k=1 k2k=12(112)2=2

Rom Sep 5, 2018
 #2
avatar+26396 
+8

Evaluate the sum

121+222+323++k2k+
\large{\dfrac{1}{2^1} + \dfrac{2}{2^2} + \dfrac{3}{2^3} + \cdots + \dfrac{k}{2^k} + \cdots}

 

Binomial power:

(1x)2=(20)(21)x+(22)x2(23)x3+(24)x4(25)x5+=1(2)x+(2)(21)21x2(2)(21)(22)321x3+(2)(21)(22)(23)4321x4(2)(21)(22)(23)(24)54321x5+=1+2x+(2)(3)2x2(2)(3)(4)32x3+(2)(3)(4)(5)432x4(2)(3)(4)(5)(6)5432x5+=1+2x+3x2+4x3+5x4+6x5+x(1x)2=x(1+2x+3x2+4x3+5x4+6x5+)=x+2x2+3x3+4x4+5x5+6x6++kxk+|x=1212(112)2=121+222+323+424+525+626++k2k+12(12)2=121+222+323+424+525+626++k2k+12(21)2=121+222+323+424+525+626++k2k+42=121+222+323+424+525+626++k2k+2=121+222+323+424+525+626++k2k+

 

 

121+222+323+424+525+626++k2k+=2

 

 

laugh

 Sep 5, 2018
edited by heureka  Sep 5, 2018
edited by heureka  Sep 5, 2018

1 Online Users

avatar