We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
120
2
avatar

The points (x, y) represented in this table lie on a straight line. The point (13, q) lies on the same line. What is the value of p + q? Express your answer as a decimal to the nearest tenth. \(\begin{array}{c|c} x & y \\ \hline 2 & -5 \\ p & -14 \\ p+2 & -17 \\ \end{array}\)

 Apr 23, 2019
 #1
avatar+4322 
+2

Hint: They all have the same slope.

 Apr 23, 2019
 #2
avatar+103069 
+1

We can equate slopes to find p

 

[ - 14 -- 5]       [ -17 - - 5]

________  =__________     simplify

    p -  2           (p + 2) - 2

 

[ -9]             [ - 12 ]

____   =    _______               cross- multiply

p - 2               p

 

-9p  =  -12 [ p - 2]

 

-9p  =  -12p + 24         add 12p to both sides

 

3p  =  24     divide both sides by 3

 

p = 8

 

So...the slope   =  -12 / 8   =   -3 / 2

 

So  since the points ( 2, - 5)  and ( 13, q)   are on the same line....we have....

 

[q - - 5 ]          -3

_______  =   ___ 

 13  - 2           2

 

[ q + 5 ]         -3

______  =      ___           cross-multiply

   11                2

 

2 [ q + 5 ]  =  -3 * 11

 

2q + 10  = -33

 

2q  =  -43

 

q = -43 / 2

 

So p + q  =   8  - 43/2  =    [ 16 - 43 ] / 2  =   -27/2  =   -13.5

 

 

 

cool cool cool

 Apr 23, 2019

57 Online Users

avatar
avatar