The sequence a_n satisfies a_1 = 1 and a_n = 3a_{n - 1} + 1 for n > 1. Find a_{1978}.
a_n is just 3 "the times the number before it" + 1.
a_1 = 1
a_2= 1 *3 + 1 = 3+1
a_3 3*(1*3+1)+1 = 3^2 + 3 +1
a_4 3(3*(1*3+1)+1)+1 = 3^3 + 3^2 + 3 + 1
a_5 3(3(3*(1*3+1)+1)+1)+1 = 3^4 + 3^3 + 3^2+ 3+1
...
a_1978 is 3^1977 + 3^1976 + ..... +3 + 1
Hope this helps.
~~Gf