We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
45
2
avatar

Simplify sqrt(17 + 12*sqrt(2)).

 Nov 18, 2019
 #2
avatar+105370 
+1

sqrt [ 17 + 12sqrt (2)  ] 

 

Let us suppose that we can write this in the form a + b sqrt (2)    where a, b are both positive integers

 

 So

 

sqrt [ 17 + 12sqrt(2) ]  = a + b sqrt (2)       square both sides

 

17 + 12 sqrt (2)  =  a^2 + 2ab sqrt (2)  + 2b^2

 

Equating coefficients it must be that

 

12sqrt (2)  =  2ab sqrt (2)         and     a^2 + 2b^2  = 17      (2)

12  = 2ab

6  = ab

b = 6/a      (1)

 

 

Sub (1)  into (2)  and we have that

 

a^2 + 2 (6/a)^2 =17

 

a^2 + 2*36 / a^2  = 17

 

a^2 + 72/a^2  = 17       multiply through by a^2

 

a^4 + 72  = 17a^2

 

a^4 - 17a^2 + 72  =  0        factor

 

(a^2 - 8) ( a^2 - 9)  =  0

 

We want  a  to be a positive integer  so  a =  3

 

And b = 6/a=  6/3  =2

 

So.....sqrt [ 17 + 12sqrt (2)  ]  can be simplified to

 

3 + 2sqrt (2)

 

 

 

cool cool cool

 Nov 18, 2019

29 Online Users

avatar