Week 8, I believe (a) is 6, but not sure
The lengths of one leg and the hypotenuse of a right triangle are given. Find the length of the other leg.
(a) leg: 8, hypotenuse: 10
_______units
(b) leg: 24, hypotenuse: 25
________units
(c) leg: 8, hypotenuse: 17
_________units
(d) leg: 15, hypotenuse: 25
__________units
week 8
(a) You're correct it is 6, because of \(a^2+b^2=c^2, a^2+8^2=10^2, a^2=10^2-8^2, a^2=6^2, a=6.\)
(b) \(a^2+b^2=c^2, a^2+24^2=25^2, a^2=25^2-24^2, a^2=25+24, a^2=49, a=7.\)
(c) \(a^2+b^2=c^2, a^2+8^2=17^2, a^2=17^2-8^2, a^2=225, a=15.\)
(d) \(a^2+b^=c^2, a^2+15^2=25^2, a^2=25^2-15^2, a^2=400, a=20.\)