Week 8, I believe (a) is 6, but not sure 




The lengths of one leg and the hypotenuse of a right triangle are given. Find the length of the other leg.
(a) leg: 8, hypotenuse: 10 


(b) leg: 24, hypotenuse: 25 


(c) leg: 8, hypotenuse: 17 


(d) leg: 15, hypotenuse: 25 










week 8

rrahh  Sep 2, 2018

(a) You're correct it is 6, because of \(a^2+b^2=c^2, a^2+8^2=10^2, a^2=10^2-8^2, a^2=6^2, a=6.\)


(b) \(a^2+b^2=c^2, a^2+24^2=25^2, a^2=25^2-24^2, a^2=25+24, a^2=49, a=7.\)


(c) \(a^2+b^2=c^2, a^2+8^2=17^2, a^2=17^2-8^2, a^2=225, a=15.\)


(d) \(a^2+b^=c^2, a^2+15^2=25^2, a^2=25^2-15^2, a^2=400, a=20.\)



tertre  Sep 2, 2018

8 Online Users


New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.