+0

# help

0
49
1

I think you are supposed to use quadratics, but I don't know how.

A piece of wire 10 m long is to be cut into two pieces. One piece is bent into a square, and the other into a circle. How can the wire be cut so that the area enclosed by the two shapes is minimized? Give your answer to the nearest tenth.

Feb 23, 2020

#1
+1

Let  x  be  the part  of the wire reserved for the  circle

This  must  be  the perimeter of the  circle

Perimeter =  2pi*r

x  =2pi* r

[ x / (2pi) ]   = r

So   the  area  of the  circle =  pi* r^2 =  pi  [ x / (2pi)]^2 = [x^2] / [ 4pi ]

The part  reserved for the squre is just the perimeter of the square  =   [ 10- x ]

The side of the square  =  perimeter /4 =   [ 10 - x ] /4

Area of the square =  side^2  =  [ 10 - x ]^2  / 16

So....the  total area of the circle and square , A, can be expressed  as

A =  x^2 / [ 4pi ]  +  [ 10 - x ]^2 / 16         simplify

A = x^2 / [ 4pi ]  +  [ x^2 - 20x + 100] /16

A =  x^2 / [4pi]  + (1/16)x^2  - (5/4)x  + 25/4

This  is  most easily done with Calculus.....I'll  graph the  curve to show you that  the  value for x obtained is the  correct one

Take the  derivative  of  A  and set  it to  0

2x /(4pi) + (2/16)x  - 5/4  = 0

x / [ 2pi]  +  x /8  = 5/4

x  [   1/[ 2pi] +  1/8]  =  5/4

x [ 1/(2pi) + 1/8 ]  = 1.25

x  =  1.25  / [  1/(2pi)  + 1/8]  ≈  4.399  ≈  4.4

Cut the wire  at  about  4.4 inches.....this is the part reserved  for the  circle

So  the part reserved for the square  =10 - 4.4  = 5.6  in

Here is a graph  showing that the  value for  x  is  correct  :

https://www.desmos.com/calculator/d8t5qos9c3   Feb 23, 2020