+0  
 
0
62
1
avatar

In which row does 2020 appear in the given figure?

 

\(\begin{array} {rrrrrrrrr} \text{Row 1:} & 1 \\ \text{Row 2:} & 2 & 3 \\ \text{Row 3:} & 4 & 5 & 6 \\ \text{Row 4:} & 7 & 8 & 9 & 10 \\ \text{Row 5:} & 11 & 12 & 13 & 14 & 15 \\ \cdot : & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot : & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ \cdot : & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{array}\)

 Dec 20, 2019

Best Answer 

 #1
avatar
+1

1/2 * n*(n + 1) =2016 [since 2016 is a perfect "triangular" number]

 

n = 63rd row. This means that the 63rd row will end in 2016.

 

Therefore, 2020 will appear in the next row, or the 64th row.

 Dec 20, 2019
 #1
avatar
+1
Best Answer

1/2 * n*(n + 1) =2016 [since 2016 is a perfect "triangular" number]

 

n = 63rd row. This means that the 63rd row will end in 2016.

 

Therefore, 2020 will appear in the next row, or the 64th row.

Guest Dec 20, 2019

10 Online Users

avatar