+0

# Help!

0
163
1

Simplify and rationalize the denominator: $\sqrt{\frac{8}{\sqrt{27}}}.$ If the simplified expression can be expressed in the form $\frac{a\sqrt{b}}{c}$, what is $a + b + c$?

Jun 12, 2019

#1
+3

$$\sqrt{\frac{8}{\sqrt{27}}}\ =\ \Bigg(\frac{8}{27^{\frac12}}\Bigg)^{\frac13}\ =\ \frac{8^{\frac13}}{27^{\frac12\cdot\frac13}}\ =\ \frac{8^{\frac13}}{27^{\frac13\cdot\frac12}}\ =\ \frac{8^{\frac13}}{(27^{\frac13})^{\frac12}}\ =\ \frac{2}{3^{\frac12}}\ =\ \frac{2}{\sqrt3}\ =\ \frac{2}{\sqrt3}\cdot\frac{\sqrt3}{\sqrt3}\ =\ \frac{2\sqrt3}{3}$$

Now it is simplified in the form  $$\frac{a\sqrt{b}}{c}$$ .

a + b + c  =  2 + 3 + 3  =  8

Jun 12, 2019

#1
+3
$$\sqrt{\frac{8}{\sqrt{27}}}\ =\ \Bigg(\frac{8}{27^{\frac12}}\Bigg)^{\frac13}\ =\ \frac{8^{\frac13}}{27^{\frac12\cdot\frac13}}\ =\ \frac{8^{\frac13}}{27^{\frac13\cdot\frac12}}\ =\ \frac{8^{\frac13}}{(27^{\frac13})^{\frac12}}\ =\ \frac{2}{3^{\frac12}}\ =\ \frac{2}{\sqrt3}\ =\ \frac{2}{\sqrt3}\cdot\frac{\sqrt3}{\sqrt3}\ =\ \frac{2\sqrt3}{3}$$
Now it is simplified in the form  $$\frac{a\sqrt{b}}{c}$$ .