+0  
 
0
28
1
avatar

If cos(x) = 2ab/(a^2 + b^2), then find tan(x/2)^2 in terms of a and b.

 May 20, 2020
 #1
avatar+24949 
+1

If

\(\cos(x) = \dfrac{2ab}{a^2 + b^2}\),

 

then find \(\tan\left(\frac{x}{2}\right)^2\) in terms of a and b.

 

I assume: \(\tan\left(\frac{x}{2}\right)^2 = \tan^2\left(\frac{x}{2}\right)\)

 

\(\begin{array}{|rcll|} \hline \mathbf{\tan^2\left(\frac{x}{2}\right)} &=& \mathbf{\dfrac{1-\cos(x)}{1+\cos(x)}} \\\\ \tan^2\left(\frac{x}{2}\right) &=& \dfrac{1-\dfrac{2ab}{a^2 + b^2}}{1+\dfrac{2ab}{a^2 + b^2}} \\\\ \tan^2\left(\frac{x}{2}\right) &=& \dfrac{\dfrac{a^2 + b^2-2ab}{a^2 + b^2}}{\dfrac{a^2 + b^2+2ab}{a^2 + b^2}} \\\\ \tan^2\left(\frac{x}{2}\right) &=& \dfrac{a^2 + b^2-2ab}{a^2 + b^2+2ab} \\\\ \tan^2\left(\frac{x}{2}\right) &=& \dfrac{\left(a-b \right)^2}{\left(a+b \right)^2} \\\\ \mathbf{\tan^2\left(\frac{x}{2}\right)} &=& \mathbf{\left(\dfrac{a-b}{a+b} \right)^2} \\ \hline \end{array}\)

 

laugh

 May 20, 2020

13 Online Users

avatar