We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
114
1
avatar+1206 

Determine the complex number z satisfying the equation \(2z-3i\bar{z}=-7+3i\). Note that \(\bar{z} \) denotes the conjugate of z.

 Apr 14, 2019
 #1
avatar+102948 
+1

2(a + bi)  - 3i ( a - bi)  = -7 + 3i

 

2a + 2bi - 3ai - 3b  = -7 +3i

 

Equate real and imaginary parts

 

(2a - 3b)  = 7    ⇒  6a - 9b  = 21

(-3a + 2b) = 3   ⇒  -6a + 4b = 6         

 

Add the last two equations   and we have

 

-5b = 27

b = -27/5

 

And  

 

2a - (3)(-27/5) =  7

 

2a + 81/5  = 35/5

2a = [ 35 -81] / 5

2a = -46 / 5

a = -46/10  = -23/5

 

So

 

z  =  -23/5  - (27/5) i

 

 

cool cool cool

 Apr 14, 2019

6 Online Users