We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
43
2
avatar

Given that AB = 7.7, angle CAB = 36 degrees, BC = 9, and angle ACD = angle BCD.  Find AD.

 

 Nov 18, 2019
 #1
avatar
+2

Triangle ABC:
Using Law of Cosines:
Sides: AB = 7.7 BC = 9 AC = 14.009
Angle ∠ A = 30.191° = 30°11'27″ = 0.527 rad
Angle ∠ B =  36° = 0.628 rad
Angle ∠ C = 113.809° = 113°48'33″ = 1.986 rad

 

 

Triangle ADC:
Using Law of Sines:
Sides: AD = 4.688 DC= 10.581 AC= 14.009
Angle ∠ C = 15.096° = 15°5'46″ = 0.263 rad
Angle ∠ A = 36° = 0.628 rad
Angle ∠ D = 128.904° = 128°54'14″ = 2.25 rad

 Nov 18, 2019
 #2
avatar+105370 
+1

Using the Law of Sines

 

sin 36 / 9  =  sin ACB / 7.7

 

sin ACB = 7.7 sin 36 / 9

 

arcsin (7.7 sin 36 / 9)  = ACB  ≈  30.19°

 

So angle  CBA = 180 - 36 - 30.19  ≈  113.81°

 

So....by the Law of sines

 

AC/ sin 113.81 = AB/ sin 30.19

 

AC / sin 113.81  =  7.7 / sin 30,19

 

AC = 7.7 sin13.81 / sin 30.19   ≈  14.0089

 

 

And because the apex angle is bisected

 

AC / AD  = BC / DB

 

AC / BC  =  AD/ DB

 

14.0089 / 9  = AD / DB

 

( 14.0089 / 9) DB = AD

 

(14.0089 / 9) DB + DB  = 7.7

 

(1 + 14.0089/9) DB = 7.7

 

DB =  7.7 / ( 1 + 14.0089/9) ≈   3.011

 

So

 

AD  = 7.7 - 3.011  ≈ 4.689

 

 

cool cool cool

 Nov 18, 2019

34 Online Users

avatar
avatar