Loading [MathJax]/jax/output/SVG/jax.js
 
+0  
 
+1
706
3
avatar

Let f(x)=2x+3kx2. Find all real numbers k so that f1(x)=f(x).

 Feb 18, 2019
 #1
avatar
0

To find the inverse of f(x), set f(x) = y. Then solve for x in terms of y. 

 

By doing this I got x=2y+3ky2, so f1(x)=2x+3kx2.

 

This means that k can be any real number for f(x)=f1(x) (as long as x2k).

 Feb 18, 2019
 #2
avatar+130474 
+2

We can write

 

y = [ 2x + 3 ] / [ kx - 2]        isolate x

 

y [ kx - 2 ] =  2x + 3

 

(ky)x - 2y = 2x + 3

 

(ky)x - 2x =  2y + 3

 

(ky - 2) x =  2y + 3    

 

x =  (2y + 3) / ( ky - 2)    "swap" x and y

 

y = (2x + 3) / (kx - 2)  =  the inverse

 

The inverse is the same as f(x)

 

So.....k can take on any real value

 

 

 

cool cool cool

 Feb 18, 2019
 #3
avatar+26396 
+4

help
Let

f(x)=2x+3kx2.

Find all real numbers

k

so that

f1(x)=f(x).

 

discontinuity:

2x+3=02x=3x=32kx20kx2k2x|x=32k232k43

 

At k=43x=32y=00

 

laugh

 Feb 19, 2019

5 Online Users

avatar
avatar